APPENDIX A

Supplemental Facility Monitoring Data

CONTENTS

Bedrock Groundwater Mapping Surface Drainage Inspection ENVIRON Inspection Report Bedrock Groundwater Mapping

	BEDROCK MONI	TORING WELLS	5
	2, 2009		
MONITORING WELL	TOP OF CASING (FEET MSL)	WATER LEVEL (FEET)	WAT ELE (FE
CR-I DDG-I DDG-I DUG-I R-I R-2 R-3 R-4 R-5 R-6 R-7 R-8 R-9 R-10 R-11 R-12 R-13 R-16 R-16 R-17 R-18 R-19 R-20 R-22 R-23 R-22 R-23 R-23	594.65 587.41 593.71 595.76 596.71 594.12 593.96 588.33 593.20 595.30 596.28 594.44 591.40 596.08 594.64 596.68 594.64 595.61 598.03 592.32 591.56 595.38 595.64 595.64 595.64 595.64 595.64 595.64 595.64 595.64 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 595.66 591.32 591.22	45. 42 33. 40 39. 72 32. 54 41. 82 42. 65 40. 11 39. 96 34. 41 39. 96 34. 41 39. 99 40. 30 40. 28 37. 34 42. 12 46. 70 41. 69 32. 85 38. 22 44. 00 38. 22 44. 00 38. 21 41. 39 41. 81 40. 40 41. 70 37. 46 38 52	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 27	552.70	1 00.02	ιĭ

0

0

0

źk † †

Mannik a Smith

SAFE

livil.

AFE SERVICES OF D OREGON FACILITY

<u>LEGEND</u>		AP
⊕ ^{R-1} (544.06)	BEDROCK MONITORING WELL AND GROUNDWATER ELEVATION	×⊢ u, N
554	POTENTIOMETRIC SURFACE CONTOUR	D U C
-	DOMINANT FLOW DIRECTION	le ç şi
POTENTIOMETRI	C CONTOUR INTERVAL = 2.0 FEET	R0 SU
TOPOGRAPHIC C	CONTOUR INTERVAL = 2.0 FEET	
		ᄩᄪᆗ
		lin m ∝l

	API
<u>NOTES</u>	
I. TOPOGRAPHIC INFORMATION ON THIS DRAWING WAS OBTAINED FROM AN AERIAL SURVEY CONDUCTED ON OCTOBER 6, 2002 BY AEROCON PHOTOGRAMMETRIC SERVICES, INC.	FOR
2. GROUNDWATER ELEVATION DATA COLLECTED BY ESOI PERSONNEL ON APRIL 2, 2009.	e e
3. THE GROUNDWATER SURFACE SHOWS LESS THAN ONE FOOT OF RELIEF ACROSS MOST OF THE SITE.	1

*i*ii

*i*ii

BEDROCK MONITORING WELLS													
	r I, 2009												
MONITORING WELL	TOP OF CASING (FEET MSL)	WATER LEVEL (FEET)	WAT ELE (FE										
CR-1 DDG-1 DDG-3 DUG-2 R-1 R-2 R-4 R-5 R-6 R-7 R-8 R-9 R-10 R-11 R-12 R-13 R-16 R-17 R-18 R-19 R-20 R-22 R-22 R-22 R-22	594.65 587.41 593.71 595.76 595.76 594.12 593.96 588.33 593.20 595.30 596.28 594.44 591.40 596.68 594.64 596.68 594.64 595.61 598.03 592.32 591.56 595.38 595.64 595.66 595.66 595.66 591.32 591.32	43.60 50.97 48.20 40.92 51.16 50.33 46.82 47.72 41.90 47.43 48.29 44.94 47.22 48.37 50.12 49.48 44.69 41.29 45.52 49.48 44.69 41.29 45.90 50.98 47.22 45.55 43.80 46.11 38.10 20.02	\$5\$555555555555555555555555555555555555										
π-24	332.40	70.02											

0

0

0

śd I I

Mannik & Smith

ENTIOMETRIC SURFACE MAP For the Bedrock Unit October 1, 2009

POT

 $\frac{1}{3}$

<u>NOTES</u>

I. TOPOGRAPHIC INFORMATION ON THIS DRAWING WAS OBTAINED FROM AN AERIAL SURVEY CONDUCTED ON OCTOBER 6, 2002 BY AEROCON PHOTOGRAMMETRIC SERVICES, INC.

2. GROUNDWATER ELEVATION DATA COLLECTED BY ESOI PERSONNEL ON OCTOBER I, 2009.

BEDROCK MONITORING WELLS													
	APRIL	1, 2010											
MONITORING WELL	TOP OF CASING (FEET MSL)	WATER LEVEL (FEET)	WAT EL: (FE										
CR-I DDG-J DDG-3 DUG-2 R-1 R-2 R-3 R-4 R-5 R-4 R-5 R-7 R-8 R-9 R-10 R-11 R-13 R-15 R-17 R-18 R-19 R-19 R-20 R-23	594.65 587.41 593.71 595.76 595.76 596.71 594.12 593.96 588.33 593.20 596.28 594.44 591.40 596.68 594.64 596.68 594.64 595.61 598.03 592.32 591.56 595.38 595.64 595.66 591.32 591.32	37. 18 29. 92 36. 32 29. 11 38. 38 39. 28 36. 65 36. 65 31. 03 35. 79 37. 21 38. 72 36. 78 39. 30 38. 64 37. 14 38. 20 29. 43 34. 73 34. 75 37. 83 34. 75 37. 83 38. 23 36. 16 33. 94											
n-24	332.40	55.11	· ·										

ŝk] |

 LEGEND
 Image: Status of the status of th

		S F S
	<u>NOTES</u>	
	I. TOPOGRAPHIC INFORMATION ON THIS DRAWING WAS OBTAINED FROM AN AERIAL SURVEY CONDUCTED ON OCTOBER 6, 2002 BY AEROCON PHOTOGRAMMETRIC SERVICES, INC.	FOR
ž	2. GROUNDWATER ELEVATION DATA COLLECTED BY ESOI PERSONNEL ON APRIL I, 2010.	9
	3. THE GROUNDWATER SURFACE SHOWS LESS THEN ONE FOOT OF RELIEF ACROSS MOST OF THE SITE.	1

\Projects\Projects A-E\E1080054\CAD\FIGURES 1109-0310\E1080054_PSFIG_0110.dgn

*i*ii

/30/2010

2010

S:\Projects\Projects A-E\E1080054\CAD\FIGURES 1109-0310\E1080054_PSFIG_0310.dgr

/30/2010

Projects\Projects A-E\E1080054\CAD\FIGURES 1109-0310\E1080054_PSFIG_1109.dgr

. S

/30/2010

S:\Projects\Projects A-E\E1080054\CAD\FIGURES 1109-0310\E1080054_PSFIG_1209.

dqr

/30/2010

Surface Drainage Inspection

ENVIROSAFE SERVICES OF OHIO, INC.

STORM WATER RUNOFF EVALUATION REPORT FOR SOLID WASTE MANAGEMENT UNITS 5, 6, AND 7

JULY 20, 2010

Prepared For: Envirosafe Services of Ohio, Inc. 876 Otter Creek Road Oregon, Ohio 43616

USEPA IDENTIFICATION NO. OHD 045 243 706 OHIO EPA IDENTIFICATION NO. 03-48-0092

Table 1. Description of Storm Water Related Structures Pertinent to SWMUs 5, 6, and 7

Structure No.	Unit	Ground Survey Date	Initial Survey Point	Structure Description	Туре	Location	Length	Width	Slope	Infiltration Risk	Comments and Recommendations
1	Cell H	5/18/10	10873	Outfall 004 Pipe	CMP w/valve	E end of pond	37'	12"	0.009	no	OK. Drains pond to ditch.
2	Cell H	5/18/10	10874	Cell H Pond	Pond	N of Cell H	350'	50'	NA	no	OK. Receives runoff from SWMUs 6 and 7 and Cell H.
3	Cell H	5/18/10	10881	Outfall 004 Ditch	Ditch	E end of pond				no	OK. Flows east from ESOI property.
	0.000	54040	40000	Decident Dise	OND	NW corner of	70	401	0.040		OK Darahara flavo (arra Otarahara E availa
4	Cell H	5/18/10	10889	Pond Inlet Pipe	Creas Surala	pond	12	12"	0.00096 to	no	OK except for depression at outlet of SWMU 6 Culvert 4. Fill
6	SWMLL6	5/18/10	10904	Culvert 4	CMP w/valve	SE of SWMU	423	18"	0.0034	medium	Inlet crushed. Repair inlet
7	SWALLS	5/10/10	10060	Ditab 5	Creas Surala	E side of SWMU 6 E	490	10	0.179	law	Ponding at point 10971 due to el 591.058 high point at point 10706. Cut 1 22 at spirit 10770 to el 590.724
	SWMLE	5/10/10	10969	Ditch 4 N S	Grass Swale	E toe of	460'		0.008 to S,	high	Ponding at N end near inlet to Culvert 5. Fill to eliminate
9	SWMU6	5/18/10	10994	Ditch 4 E-W	Grass Swale	N toe of	485		0.002 10 11	high	Ponding at several points along ditch. Gas vents in ditch
5	011110 0	5/10/10	10334	Ditori 4 E-W	Orass Owald	NE of SWMU	405		0.003	nign	Invert too high, hinders storm water sampling at Culvert 5
10	SWMU 6	5/18/10	11006	Outfall 12 Ditch	Riprap Ditch	6	42'	6'	0.009	low	outlet. Cut invert 9" to facilitate sampling.
11	SWMU 6	5/18/10	11006	Culvert 5	CMP	NE of SWMU 6	20'	12"	0.028	high	Conveys flow from Ditch 4 to Outfall 6. Depressed areas at inlet. Repair inlet area. If necessary, install catch basin.
12	SWMU 6	5/18/10	11062	Ditch 1 N Riprap	Riprap Ditch	NW SWMU 6	69'	8'	0.093	no	OK. Feeds Ditch 4 E-W.
13	SWMU 6	5/18/10	11075	Ditch 1 N-S	Grass Swale	W SWMU 6	190'		0.030	no	OK. Feeds riprap N and S. Apex at point 11083.
14	SWMU 6	5/18/10	11086	Ditch 1 S Riprap	Riprap Ditch	SW SWMU 6	79'	8'	0.131	no	OK. Feeds Ditch 6.
15	SVVIVIU 6	5/18/10	11099	Ditch 6	Grass Swale	SVV SVVMU 6	38		0.037	no	Grade el 591.0. Top el 596.49 (5.49' above grade). Bottom el
16	SWMU 6	5/18/10	near 11109	Standpipe	PVC pipe	SW SWMU 6	13.49	6"	vertical	high	583.0. Water el 591.59 (4.90' depth to water). See Structure 17. Ponding in 80' segment W of E side of electrical tower. Fixes:
17	SWALLE	5/19/10	11102	Ditch 7 W	Grace Swala	SW/ SW/MILE	222'		0.0076	bigh	Test standpipe water. Install underdrain, sump, & pump. Fill
17	30000	5/10/10	11102	Ditch / W	Glass Swale	300 30000 0	232	101	0.0070	nign	OK. Fed by Ditch 7 W. Drains to junction box NE of Cell G.
18	SWMU 6	5/18/10	11103	Culvert 8	CMP	NW SWMU 7	127	12"	0.021	no	Outlet el 587.5 estimated.
19	SWMU 6	5/18/10	11104	Culvert 9 - SWMU 7 to SWMU 6	CMP	to SW SWMU 6	99'	24"	0.025	high	Ponding at inlet. Fill depressed area, perhaps with concrete or grout.
											Inadequate slope, ponding, & ruts. Fill point N11,265.65, F11.007.94 to el 593.28 and fill constant slopes in both
20	SW/MLL6	5/19/10	11150	Ditch 7 E	Grace Swola	S SWMII 6	266'		0.0022	bigh	directions to points 11123 and 11176. New length 291'. New
20	300000	5/16/10	11150	DIICH 7 E	Concrete	3 30000 0	300		0.0023	nign	OK. Receives flow from SWMU 6 Culvert 8 and discharges
21	Cell G	5/18/10	NA	Junction Box	Chamber	NE of Cell G				no	through Cell G Culvert 9 to Cell G NW Catch Basin.
22	Cell G	5/18/10	11227	Catch Basin	Catch Basin	N of Cell G	36"	36"		no	OK. Receives flow from Cell G Culvert 9. OK. Receives flow from Cell G Junction Box and discharges.
23	Cell G	5/18/10	11228	Culvert 9 (Cell G)	CMP	N of Cell G	240'	24"	0.0255	no	to Catch Basin.
24	Cell G	5/16/10	11229	Cuivent 10	GWP	N OI Cell G	142	24	0.0068	no	OK. Receives now non Calch Basin.
25 26	Cell F Cell F	5/18/10 5/18/10	11231 11232	Culvert 11 Culvert 12	CMP	SW Cell F SW Cell F	20'	12" 12"	0.029 flat	no	OK. Collects Cell F runoff and discharges to concrete trench. Inlet and outlet to Detention Area C from concrete trench.
27	Cell F	5/18/10	11234	Detention Area C	Drv Pond	SW Cell F	67'	30'	flat	no	Pond does not drain perfectly but is far enough from SWMUs 5. 6. and 7 to not produce significant recharge.
											Adjacent to Structure 39. Grade el 600.251. Top el 601.751 (1.5' above grade). Bottom el 591.80. Liquid el 596.521 (5.23) depti to water), which is above the inlet invert (el 594.86) of Structure 19 and above the liquid levels in piezometer PZ-9 (el 593) and monitoring well T-85 (el 592). The standpipe may
28	SWMU 7	5/18/10	11300	Standpipe	PVC pipe	NW SWMU 7 F & Center	10'	6"	vertical	high	contain leachate. See report text for recommendations. 55' main stem. 218' N branch. 287' S branch. Deeper than
29	SWMU 7	5/18/10	11315	Central Letdown	Rock Letdown	SWMU 7	560'	10'	0.10	medium	needed. May promote recharge. Discharges to Ditch 1.
30	SWMU 7	5/24/10	11406	Ditch 1	Grass Swale	E of SWMU 7	786'		0.005	high	11423 to point 11445.
31	SWMU 7	5/24/10	11445	Culvert 1	CMP	SE of SWMU 7	20'	12"	-0.013	high	Needs cleaning. May have reverse slope. Can't tell until it is clean. Discharges S to Structure 42.
32	SWMU 7	5/24/10	11447	Ditch 3 E	Grass Swale	E end S SWMU 7	40'		0.243	no	OK. Drains from riprap section of ditch to Ditch 1.
33	SWMU 7	5/24/10	11454	Ditch 3 Ripran	Rinran Ditch	E end S	182'	3'	0.11	00	OK Drains east
	014/14/17	5/04/40	11.105	Ditah 2 Ocation	Crees Cord	Center S	010	5	0.015		
34	SVVIMU /	5/24/10	11485	Ditch 3 Central	Grass Swale	West S	213		0.015	no	UK. Drains east.
35	SWMU 7	5/24/10	11508	Ditch 3 West Culvert 4 (Culvert	Grass Swale	SWMU 7	166'		0.084	no	OK. Drains west to outlet of Culvert 4. Crushed and partially filled with sediment at N end. Needs
36	SWMU 7	5/24/10	11539	11)	CMP	SW SWMU 7	142'	18"	-0.002	high	repair and cleaning. Recheck slope when clean. Needs cleaning. Ponding at points 11550 and 11553
37	SWMU 7	5/24/10	11539	W Ditch	Grass Swale	SW SWMU 7	151'		0.006	high	Receives flow from Culvert 4 and Ditch 3 West.
38	SWMU 7	5/24/10	11555	W Riprap Ditch	Riprap Ditch	W SWMU 7	210'	7' to 11'	0.037	high	obstruction at Culvert 6.
											Culvert 6 is install too high, obstructs the flow from the W riprap ditch, and causes ponding. Remove and reinstall the
39	SWMU 7	5/24/10	11575	Culvert 6	PVC pipe	W SWMU 7	15'	12"	0.111	high	culvert to eliminate the obstruction. Too deep at inlet to SWMU 6 Culvert 9. Fill depressed area
40	SWMU 7	5/24/10	11585	NW Riprap Ditch	Riprap Ditch	NW SWMU 7	54'	15'	0.231	high	perhaps with concrete or grout.

Table 1.	Description of	Storm Water	Related Structures	s Pertinent to S	SWMUs 5, 6, and 7
----------	----------------	-------------	--------------------	------------------	-------------------

Structure No.	Unit	Ground Survey Date	Initial Survey Point	Structure Description	Туре	Location	Length	Width	Slope	Infiltration Risk	Comments and Recommendations
						S of SF					Storm water collects in the storage tank containment area and
	Fishburn Tank			Fishburn Tank	Diked Tank	Corner of					could possibly infiltrate to recharge SWMU 7. Pump out water
41	Area			Diked Area	Area	SWMU 7	100'	100'		hiah	as soon as possible when it accumulates.
						E New Oil				ý	Drains south from Structure 31, SWMU 7 Culvert 1, Ponds at
42	New Oil Pond	5/24/10	11630	Ditch 4	Grass Swale	Pond	216'		0.033	high	N end, Regrade the N 80' of the ditch invert.
						E New Oil					
43	New Oil Pond	5/24/10	11662	Culvert 8	CMP	Pond	49'	24"	0.052	no	OK. Drains east from Ditch 4 to Cell H ditch.
						N Side New					Poorly defined inlet, Discharges SE to Ditch 7, Probably does
44	New Oil Pond	5/24/10	11673	Culvert 10	PVC pipe	Oil Pond	40'	6"	0.022	no	not convery much water.
						Center New					Flows SE to ponded area. Need to fill ponded area from point
45	New Oil Pond	5/24/10	11674	Ditch 7	Grass Swale	Oil Pond	108'		0.037	high	11686 in Ditch 7 to point 11686.
						E New Oil				× ×	Failed ditch flows S from Ditch 7 to Ditch 8. Need to fill
46	New Oil Pond	5/24/10	11686	Ponded Area	Failed Ditch	Pond	183'	5' to 22'	flat	high	ponded area from point 11686 in Ditch 7 to point 11686.
						S New Oil					Receives flow from ponded area. Flows W to Riprap. Need to
47	New Oil Pond	5/24/10	11705	Ditch 8 S	Grass Swale	Pond	11'		0.0104	high	fill from Ditch 7 to Ditch 8 to eliminate pond.
						SE New Oil					Some ponding and infiltration may occur between the rocks.
48	New Oil Pond	5/24/10	11707	SE Riprap Ditch	Riprap Ditch	Pond	258'	3' to 5'	0.018	medium	Reserve action for future evaluation.
						W New Oil					Ponds due to sag near point 11756. Discharge hindered by
49	New Oil Pond	5/24/10	11751	Ditch 8 W	Grass Swale	Pond	147'		0.0044	high	SWMU 7 Culvert 4. Fill sag and fix Culvert 4.
						Inside SWMU					Evidence of ponding in NE and SE portions of the ditch. Fill
50	SWMU 5	5/24/10	11873	Ditch 1	Grass Swale	5 Perimeter	1800'		varies	medium	depressed areas.
											OK. Surrounded & covered with rock. Drains southern
51	SWMU 5	5/24/10	11873	Catch Basin 2	Catch Basin	S SWMU 5				no	portions of Ditch 1 to Ditch 2 through Culvert 2.
52	SWMU 5			Culvert 2	CMP	S SWMU 5	50'	18"		no	OK. Drains Catch Basin 2 to Ditch 2.
					Roadside	N Side Old					Ditch overgrown with phragmites and has standing water
53	SWMU 5			Ditch 2	Ditch	Millard Rd	468'			high	continuously. Ask City of Oregon to clean & regrade.
54	SWMU 5	5/24/10	11911	Catch Basin 1	Catch Basin	W SWMU 5				no	OK. Drains W and NW portions of Ditch 1.
55	SWMU 5	5/24/10	11913	Culvert 1	CMP	W SWMU 5		18"		no	OK. Drains Catch Basin 1 to Otter Creek.
56	SWMU 5	5/24/10	11943	Catch Basin 3	Catch Basin	N SWMU 5				no	OK. Drains N and E portions of Ditch 1.
57	SWMU 5	5/24/10	11944	Culvert 3	CMP	N SWMU 5		18"		no	OK. Drain Catch Basin 3 N to Ditch 3.
1					Roadside	S Side New		1			
58	SWMU 5	1	1	Ditch 3	Ditch	Millard Rd	574'	1	1	no	OK. Perimeter monitoring wells are between ditch & SWMU 5.

ENVIRON Inspection Report

October 27, 2010

<u>via e-mail</u>

Mr. Stephen J. DeLussa Environmental Affairs Manager Envirosource Technologies, Inc. 2300 Computer Ave., Suite L-61 Willow Grove, PA 19090

Re: Envirosafe Services of Ohio, Inc. – Otter Creek Road Facility Summary of June 2010 Field Activities

As an initial task for the Corrective Measures Study (CMS) implementation, ENVIRON identified certain data requirements for the evaluation of corrective measures alternatives. These data requirements are summarized in the attached Table 1. The majority of the data required for evaluation in the CMS were collected as part of the RCRA Facility Investigation (RFI), presumptive corrective measures implementation, and ESOI's ongoing RCRA facility monitoring programs. However, a few potential data gaps were identified with respect to current conditions in comparison with observations recorded during the RFI, including but not limit to, conditions identified during the RFI that have been addressed by the implementation of presumptive corrective measures and/or facility maintenance activities. Based on the identified potential data gaps, additional field activities were performed on June 2, 2010 to obtain the additional data to assess current conditions and to support the evaluation of corrective measures alternatives in the CMS. Below is a summary of the additional field activities.

Landfill Gas Conditions (SWMU 8)

ENVIRON collected additional landfill gas measurements from each temporary leachate well (TLW-201 through TLW-207) associated with the RFI conducted at SWMU 8 (Old Oil Pond). Prior to collection of landfill gas each well was purged of stagnate air from the leachate well lines for at least 45 seconds. Following the purging activities, landfill gas parameters (including methane, carbon dioxide, and oxygen) were collected from each leachate well during two sampling intervals separated by approximately five minutes.

Elevated methane and gas pressure were evident at levels consistent with those detected during the RFI. A summary of the landfill gas data collected during the June sampling activities are provided on Table 2a. In addition, for reference, a summary of landfill gas data obtained during the RFI are summarized in Tables 2b and 2c.

<u>Free-Phase Liquid/Groundwater Level Measurements (SWMU 5 and SWMU 8)</u> <u>SMWU 5 (Millard Landfill)</u>

ENVIRON collected measurements of free-phase liquid thickness and depth-to-groundwater at twelve temporary monitoring wells (T20S(1) through T20S(8), MR6S, T20W, T21S, and T45W) along the western boundary of SWMU 5 (Millard Landfill). Free-phase liquid/groundwater level measurements were collected using an electronic oil/interface (O/I) probe, which was decontaminated with an alconox and water solution after measuring each well.

Non-aqueous phase liquid (NAPL) was identified at three locations during the June gauging activities at SWMU 5: T20S(2), T20S(5), and T20S(6). The locations containing measurable NAPL during the June monitoring event are consistent with the observations identified during the RFI. Depth-to-NAPL and depth-to-water measurements collected in June 2010 are provided in Table 3a. For reference, similar measurements collected during the RFI are also provided in the same table.

Additionally, a confirmatory NAPL sample was collected from T20S(5) and analyzed for specific gravity and viscosity. This location was selected for a sample as the visible characteristics of the NAPL appeared different from those noted during the RFI. Sample results from T20S(5) are summarized on Table 4a. Viscosity results are similar between the two sampling events. For reference, similar measurements collected during the RFI are also provided Table 4b.

SMWU 8 (Old Oil Pond)

ENVIRON also collected free-phase liquid/leachate measurements from seven temporary leachate wells (TLW-201 through TLW-207) and three temporary monitoring wells (T33S, T-208, and T-209) located throughout SWMU 8 (Old Oil Pond).

NAPL was identified at five locations ranging in thickness from approximately 4.4 to 20 feet. These locations were the same as those identified has having NAPL present in the RFI. As detailed in the RFI, temporary monitoring wells T-208 and T-209 were installed in July 2006 to delineate free liquids found in well T33S; however, no measureable NAPL was noted in either T-208 or T-209 during the June 2010 field activities. NAPL/leachate measurements collected in June 2010 are provided in Table 3b. For reference, similar measurements collected during the RFI are also provided in the same table.

Inspection of Site-Wide Cap Conditions and Prior Seep Areas

ENVIRON performed a physical inspection of the seep areas at SWMU 6 (North Sanitary LF), SWMU 8 (Old Oil Pond), and SWMU 9 (New Oil Pond), and seepage at/around AOC 7 (Crock). Additionally, the cap conditions (i.e., assessment of evidence of subsidence, erosion, lack of vegetation, stormwater ponding) were also inspected at SWMU 5 (Millard Landfill), SWMU 6 (North Sanitary LF), SWMU 7 (Central Sanitary LF), SWMU 8 (Old Oil Pond), and SWMU 9 (New Oil Pond).

- Visual inspection of SWMU 5 determined the cap to be in good condition with well-developed vegetative cover.
- Visual inspection of SWMU 6 did not identify surface seepage or ponding along the northeast corner and the cap appeared in good condition with well-developed vegetative cover.
- Visual inspection of SWMU 7 indicated that the cap materials are in good condition with welldeveloped vegetative cover; however, it was noted that the stormwater flow from SWMU 7 to Outfall 4 is less than ideal and should be improved.
- Visual inspection of SWMU 8 identified surface seepage in the central portion of the Old Oil Pond, in the vicinity of TLW-205. Additionally, the cap on SWMU 8 appears to be subsiding in the area of Building C, which was also noted in the RFI.
- Visual inspection of AOC 7 (Butz Crock) did not identify evidence of seepage at or in the vicinity of Butz Crock.

• Visual inspection of SWMU 9 identified oily water seepage on the top of the unit and near certain vent pipes. Similar to prior observations, stormwater ponding was evident on the unit in the vicinity of the vent pipes.

The photographs taken during the visual inspection are attached for reference.

Please contact me if you have any questions regarding observations and data gathered during the June 2010 site inspection.

Sincerely,

J. Mark Nielsen, P.E. Principal

Enclosures

Table 1 – Data Requirments for Evaluation of Corrective Measures Study Acitivies Table 2a – SWMU 8 Landfill Gas Data June 2010 Table 2b – SWMU 8 Landfill Gas Data October 2006 Table 2c – SWMU 8 Landfill Gas Data August 2007 Table 3a – LNAPL Monitoring SWMU 5 Table 3b – LNAPL Monitoring SWMU 8 Table 4a – Summary of Physical Properties – T20S(5) Table 4b – Summary of Physical Properties - 2006 Photo Log

cc: S. Song

F. Ramacciotti

Field_Report_20100812.doc

Table 1: Data Requirements for Evaluation of Corrective Measures Study Activities ESOI Otter Creek Facility, Oregon, Ohio																								
Corrective Measure	SWMU	AOCs	Discharge Permit Limitations	Actual Recovery Flow Rate	Actual Leachate Concentrations ¹	Actual Leachate Levels ²	Leachate Generation Projections ³	Cell Construction Details ⁴	Current Cap Condition ⁵	Cap Test Results ⁶	Topography ⁷	Existing Stormwater Systems ⁸	Actual LFG Data ⁹	Actual Groundwater Quality	Groundwater Hydraulics ¹⁰	Geological Profiles ¹¹	NAPL Properties ¹²	NAPL Recovery ¹³	Waste Mapping ¹⁴	Seeps Mapping ¹⁵	Waste Characterization	Building Information ¹⁶	Tank Properties ¹⁷	Unit Cost Data
Leachate Collection System Performance	1, 5, 6 , 7	1		х		х	Х	х	Х	х					х									Х
Evaluate Options to Enhance Leachate Collection System	1, 5, 6 , 7, 8	1		Х		х	Х	х				Х	Х		х	Х			Х	Х				Х
Leachate/NAPL Seep Evaluation	6, 8 , 9	7, 12		х	х	х	х	х	х	х	х	Х					х	х		х				х
Existing Cap Performance	1, 5, 6, 7, 8, 9	9		Х		х	Х	х	Х	х	х		х						Х	Х				Х
Perfomance of Existing Caps Outside Landfill Limit (Roadways)	6, 7, 9			х		х	х	х	х	х	х		х			х			Х	х	х			х
Evaluation of Options for Cap Upgrades (if warranted)	1, 5, 6, 7, 8, 9	9		Х		х	х	х	Х	х	х		х			Х			Х	Х				Х
Stormwater Management System Evaluation	1, 5, 6, 7, 9	1					х	х	Х	х	х	Х								Х				Х
Evaluate Active LFG Recovery	1, 5, 6, 7, 8					Х		х	Х	х	х		Х			Х								Х
Evaluate Need for Geotechnical Monitoring Program	1, 5, 6, 7, 8, 9	9						х	Х	х	х		х			Х			Х					Х
LNAPL Recovery/ Containment/ Removal	5, 8, 9	7						х		х	х			х	х	Х	х	х		Х	х			Х
Targeted Waste Removal, Cap Expansion and/or Restoration	6, 8, 9	7, 12						х	Х		х	х				Х					х			Х
Containment of Lacustrine/ Upper Fill Groundwater	5, 6, 8					х	х	х		х	х			х	х	Х	х	х						Х
Building Demolition	8										х								Х		х	х	х	Х
CAMU	8				х	х		х			х		х			Х	х	х			х	х		Х
Hydraulic Control Adjacent to Utilities	8	1			х	х	Х	х			х			х	х	Х	х	Х		Х	х			Х
On-Site Pretreatment of Leachate	1, 5, 6, 7, 8, 9	9 1	х	х	х		х																	х
Groundwater Monitoring Program Evaluation	all	all			х	х		х						х	х	х								х
Tank Removal		6, 12																					Х	Х

Notes:
1. Minimum, Average, and Maximum influent (groundwater/leachate) concentrations for each parameter for the project life and the past five years. In addition, number of detections for each parameter.
2. Current leachate levels and historical leachate levels, leachate mounding rates, and leachate recovery rates (if currently being extracted).
3. Landfill cap design modeling results (e.g., leachate generation, stormwater infiltration).
4. Design records and as-built records of existing cap (bottom construction, cap thickness, slopes, tie-ins, etc).
5. Evaluation of current cap conditions as it relates to the integrity of the cap and the potential for infiltration (e.g., erosion, ruts, fissures/cracks, localized failures, booting of cap penetrations, etc.)

Evaluation of current cap conditions as it relates to the integrity of the cap and the potential for infiltration (é.g., erosion, ruts, fissures/cracks, localized failures, booting of cap penetrations, etc.)
 Evaluation of current cap conditions as it relates to the integrity of the cap and the potential for infiltration (é.g., erosion, ruts, fissures/cracks, localized failures, booting of cap penetrations, etc.)
 Current and historical topographical maps and analysis of topographical surface changes. Topographical maps should include site features and utilities.
 Design records and as-built records of existing stormwater management system and assessment of current conditions.
 Laboratory and field test results on LFG, including parameters analyzed, quality, flow and pressure data. Pore pressure measurements and vacuum test results.
 Depth to groundwater (groundwater recover) records, groundwater flow and direction, and hydraulic conductivity data
 Geological layers, physical properties of layers, layer thickness, layer permeabilities. Depth to confining layer.
 NPL physical characteristics, NAPL thickness, NAPL extent, and NAPL volume
 Depth to NAPL, NAPL recovery study results, NAPL recovery records.
 Vertical and horizontal extent of waste. Boring logs.
 Seep observation records- when, where and ambient conditions prior to seep observations.
 Building photographs, as-built drawings. Costs for building construction and immobile building equipment to be salvaged.
 Tanks sizes and contents, location and depth to tanks, physical construction of tanks (utilities, building, roads, etc), tank properties (materials of construction, eathodic protection, etc), and extent of soil impacts resulting from tanks.

TABLE 2a Envirosafe Services of Ohio Oregon, Ohio RCRA Facility Investigation SWMU 8 Landfill Gas Data June 2010

	TLW	-201	TLW	-202	TLW	-203	TLV	/-204	TLV	V-205	TLW	-206	TLW-207		
	6/2/2/	010	6/2/2	.010	6/2/2	.010	6/2/	2010	6/2/	2010	6/2/2	.010	6/2/20	.010	
l l	Initial J	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial F	Final	
Pressure (PSI)	0	0) 0	0	0	0	0	0	3.5	3.3	, 0	0	0	0	
Time	1313	1316	1305	1307	1322	1325	1344	1347	1353	1357	1330	1333	1338	1339	
l l	1						1							I	
CH4 (0 - 100%)	5.1	5.7	/	83.2	92.3	92.5	<<<	<<<		. <<<		<<<	. ~~~	<<<	
CO2 (0 - 100%)	4.5	4.9	12.9	9.3	6.7	6.7	13.2	12.9	27.8	28.3	, 16.8	16.6	28.4	28.4	
O2 (0 - 25%)	17.2	17.2	2.3	7.2	0.8	0.7	1.1	1.9	0.1	0.1	. 1.1	1.3	0.3	0.4	
1 r	1						1							I	
LEL (0 - 100%)	<<<	<<<	: <<<	<<<	: <<<	<<<		<<<		. <<<		<<<	. <<<	<<<	
H2S (0 - 200 ppm)	N/A	N/A	N/A	N/A	N/A	N/A	. N/A	N/A	. N/A	. N/A	N/A	N/A	. N/A	N/A	
CO (0 - 2000 ppm)	N/A	N/A	N/A	N/A	N/A	N/A	. N/A	N/A	N/A	. N/A	N/A	N/A	. N/A	N/A	
1 r	1						1								
Balance %	73.1	72.1	. 0	0) 0	0	<<<	<<<			: <<<	<<<	. <<<	<<<	
Notes:	,														
1	Landfill gas .	measureme	nts collected ,	using a GEN	M2000 Landfi	ll Gas Mete	r								

Abbreviations:

1 <--- Measured reading is out of range of the instruments capabilities (greater than range)

TABLE 2b Envirosafe Services of Ohio Oregon, Ohio RCRA Facility Investigation SWMU 8 Landfill Gas Data October 2006

1	LFG-201	I	FG-202	LEG-203	LFG	204	LEG-205	LEG-20	6	LEG-207	1	LFG-208		LEG-209		LFG-210	T	LEG-211	1	LFG-212	<u> </u>	LFG-213	T	LFG-214	LE	G-215
	10/27/2006	10	1/27/2006	10/27/2006	10/26/	2006	10/27/2006	10/26/20	06	10/26/2006		10/26/2006		10/26-27/200	06	10/26/2006		10/26/2006		10/25/2006		10/25/2006		10/24/2006	10/2	5/2006
Praccura (PSI)	ND		VD ND	ND	ND ND	ND	ND 1	ID ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	D NE) NI
Denth	Shallow (~7.5' has) Shalla	$w(\sim 75' has)$	Shallow (~5.5' h	(a) Shallow (a	5 5' has)	Shallow (~3.5' has	Shallow (~7	5' has)	Shallow (~115' has	() S	Shallow (~7.5')	bas)	Shallow (~115'	(has)	Shallow (~13.5' h	as)	Shallow (~6 5')	has)	Shallow (~14' ha	as)	Shallow (~6.5' he	1412	Shallow (~6' has)	Shallow	(~6.5' has)
Depu	Initial Final	Initial	Final	Initial Final	Initial 1	anal and	Initial Final	Initial Fit	nal Ir	itial Final	Ini	itial Final	-8-1/ In	uitial Final	1 1	Initial Final	8.97 Is	nitial Final	5857	Initial Final	<i>"</i> ,	Initial Final	5.37 In	itial Final	Initial	Final
Time	1455 1	500 11	35 1145	1005	1015 1410	1420	1455 15	00 1335	1340	1045 10	050	1455	1500	1630	1640	0905	0915	1540	1550	1515	1520	0900	NA	1350 134	5 1055	5 110'
CH4 (0 - 100%)	0	0 51	1.1 42.2	0	0 47.5	49	98.7 1	00 68.1	52	29	3	39	25.1	72.5	67.2	76	65	67.4	68.9	100	2.4	0	NA	3	0 16.9	/ 19.9
CO2 (0 - 60%)	0	0 17	7.5 14.4	0	0 9.5	9.4	14.9	15 29	26	4.7 (0.9	14.5	10	42.3	35.3	29.4	26	32.9	33.6	13.7	0.9	0	NA	0.5	0 10.2	1 12.1
O2 (0 - 30%)	21	21 5	5.7 8.7	21.2	21.4 6.2	6	3	2.1 2.2	6.2	14.5 19	19.8	11.1	14.3	1.8	2	18.8	20.7	5.7	5.7	1.6	20.7	21.2	NA	20.8 21	.2 17.5	15.
LEL (0 - 100%)	0	0 49	9.2 40.5	0	0 47.4	47.7	99.3		49.5	4.9	1.8	21.7	15.8	72	62.3	55		55.9	53.5	0	0	0	NA	0	0 46	5 N/
H2S (0 -100 ppm)	0	0	0 0	0	0 7	4	0	0 406	406	0	0	1	0	1	0	0	0	49	49	0	0	0	NA	0	0 0	
CO (0 - 50 ppm)	0	0	0 0	0	0 0	0	0	0 7	NA	0	0	9	0	6	7	1	1	5	5	0	21.5	0	NA	0	0	3
PID (0 - 10,000 ppm)	ND	ND N	ND ND	0.7	2.4 ND	ND	ND I	ND 9.3	2.7	9.5	11	ND	1.3	2.3	1.6	4.2	5.3	4.1	3.9	ND	ND	ND	NA	8.3 N	D NE	' ND
Depth	Deep	Deep	(~19.5' bgs)	Deep	Dee	р	Deep (~20' bgs)	Deep		Deep (~19.5' bgs))	Deep		Deep (~23.5' b	bgs)	Deep (~19.5' bg:	s)	Deep		Deep (25' bgs)	,	Deep (~11.5' bgs	s)	Deep	Deep (~	11.5' bgs)
	Initial Final	Initial	Final	Initial Final	Initial 1	Final	Initial Final	Initial Fir	nal In	itial Final		Initial Final	In	itial Final	1	Initial Final		Initial Final		Initial Final	J	Initial Final		Initial Final	Initial	Final
Time	e NA	NA 13	05 1310	NA	NA NA	NA	1535 15	45 NA	NA	1125 11	130	NA	NA	0855	0905	0935	0940	NA	NA	1545	1550	0930	NA	NA N	A 1128	; 1140
CH4 (0 - 100%)	NA	NA (0.9 0	NA	NA NA	NA	17.3 4	1.5 NA	NA	62	52	NA	NA	0	0.4	0	0	NA	NA	1.3	0.7	0	NA	NA N	A () (
CO2 (0 - 50%)	NA	NA	0 0	NA	NA NA	NA	0	4 NA	NA	19.4	18	NA	NA	0.1	0	0.5	0.2	NA	NA	0	0	0	NA	NA N	A () (
O2 (0 - 25%)	NA	NA 20	0.4 20.4	NA	NA NA	NA	17.5 1	2.4 NA	NA	5.5	5.5	NA	NA	21.4	21.4	18.9	20.5	NA	NA	21.1	21.2	21.2	NA	NA N	A 21.6	21.5
LEL (0 - 100%)	NA	NA	0 0	NA	NA NA	NA	15.8 4	5.2 NA	NA	62.4	55	NA	NA	0	0.5		4	NA	NA	0	0	0	NA	NA N	A () (
H2S (0 -100 ppm)	NA	NA	0 0	NA	NA NA	NA	0	0 NA	NA	0	0	NA	NA	0	0	0	0	NA	NA	0	0	0	NA	NA N	A () (
CO (0 - 50 ppm)	NA	NA	0 0	NA	NA NA	NA	708	25 NA	NA	0	0	NA	NA	0	0	2	0	NA	NA	0	0	0	NA	NA N	A () (
PID (0 - 10,000 ppm)	NA	NA N	ND ND	NA	NA NA	NA	NA I	NA NA	NA	1.3 (0.9	NA	NA	ND	ND	24	30.3	NA	NA	ND	16.1	ND	NA	NA N	A NE) NE
Notes:																										
 Landfill gas measurements for 	r																									
methane, carbon dioxide,																										
oxygen and LEL were collected																										
using a Landtec GA 94 Landfill																										
Gas Meter																										
2. Landfill gas measurements for	r																									
hydrogen sulfide and carbon																										
monoxide were collected using a	1																									
QRAE Combustible Gas Meter																										
Photoionization detector																										
(PID) readings were collected																										
using a miniRAE 2000																										
Abbreviations:																										
NA Not Analyzed																										
ND - Not Detected																										
* - Peak the instruments																										
capabilities to detect LEL																										

TABLE 2c Envirosafe Services of Ohio Oregon, Ohio RCRA Facility Investigation SWMU 8 Landfill Gas Data August 2007

	TLW	-201	TLV	V-202	TLW	-203	TLW	-204	TLW	-205	TLW	-206	TLW	-207
	8/29/2	2007	8/29	/2007	8/29/2	2007	8/29/	2007	8/29/2	2007	8/29/2	2007	8/29/2	2007
	Initial F	Final	Initial	Final	Initial 1	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Pressure (PSI)	0	0	0.7	0.8	0	0.8	0.7	0.5	4	4.6	0	0	0	0
Time	1357	1402	1348	1353	1340	1345	2001	2006	1159	1207	1326	1331	1314	1319
CH4 (0 - 100%)	26	3.7	0.2	4.6	69.7	8	<<<	<<<	0	<<<	27.2	5.4	1.5	3.2
CO2 (0 - 100%)	3.7	0.5	0	0.8	4.6	0.7	17	17.6	0	30.9	2.9	0.1	0.3	0.1
O2 (0 - 25%)	17	19.9	20.4	20.1	9.2	18.9	5.1	1.3	20.8	0	17.4	20.2	19.8	20.4
LEL (0 - 100%)	<<<	46	<<<	85	<<<	<<<	<<<	<<<	0	<<<	<<<	<<<	15	13
H2S (0 - 200 ppm)	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<	<<<
CO (0 - 2000 ppm)	116	115	125	121	117	126	19	75	2	96	96	111	36	28
Balance %	60.2	77	67.9	74.5	45.4	71.5	0	0	79.19	N/A	56.4	74.2	77.5	78.2
Notes:														
1	1 Landfill gas measurements collected using a GEM2000 Plus Landfill Gas Meter													
Abbreviations:	Abbreviations:													
1 <<< Measured reading is out of range of the instruments canabilities (greater than range)														

				Table 3	a				
LNAPL Monitoring									
	ESOI Otter Creek Facility								
Oregon, Ohio									
	-			Millard Road Land	Ifill SWMU 5				
Date	Well	Depth to NAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Comments				
7/20/2006	T-20S(1)		4.97		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-20S(2)	13.97	14.00	0.03	Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-20S (3)		6.17		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-20S (4)		10.19		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-20S (5)	6.55	7.53	0.98	Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-20S (6)		13.99		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	MR-6S		12.88		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	T-21S		15.44		Wells were checked for DNAPL. No DNAPL was present				
7/20/2006	TLW-1		11.83		Wells were checked for DNAPL. No DNAPL was present				
		T							
7/25/2006	T-20S (2)	14.24	14.28	0.04					
7/25/2006	T-20S (5)	6.7	7.71	1.01	Sampled on July 25, 2006, effectively removing the NAPL layer				
	1	T	1						
7/26/2006	T-20S (1)		5.3						
7/26/2006	T-20S (2)	14.22	14.25	0.03					
7/26/2006	T-20S (3)		6.42						
7/26/2006	T-20S (4)		10.4						
7/26/2006	T-20S (5)	6.83	/.12	0.29					
//26/2006	1-205 (6)		14.12						
7/27/2006	T 208 (5)	674	7.00	0.26					
//2//2000	1-205 (5)	0.74	7.00	0.20					
7/28/2006	$T_{-}20S(5)$	5 59	5 79	0.20	Heavy rain fell the previous night				
1120/2000	1 200 (3)	5.57	5.17	0.20	ficary fail for the provious high				
8/1/2006	T-20S (1)		5.16						
8/1/2006	T-20S (2)	14.1	14.13	0.03					
8/1/2006	T-20S (3)		6.22						
8/1/2006	T-20S (4)		10.3						
8/1/2006	T-20S (5)	6.34	6.63	0.29					
8/1/2006	T-20S (6)		13.98						
8/1/2006	MR-6S		13.06						
8/1/2006	T-20W		8.54						
8/1/2006	T-21S		15.46						
8/1/2006	T-46W		10.31						
8/1/2006	T-47W		14.19						
8/1/2006	T-45W		11.11						
8/1/2006	TLW-1		12.25						
		T							
8/3/2006	T-20S (1)		5.14						
8/3/2006	T-20S (2)	14.08	14.09	0.01					
8/3/2006	T-20S (3)		6.21						
8/3/2006	1-205 (4) T-205 (5)		10.31						
8/3/2006	1-208 (3) T 208 (6)	6.53	0./1	0.18	Checked for DINAPL, but it was not present.				
8/3/2006	1-203 (0) MD 69		14.03						
0/3/2000 8/2/2004	T 20W		0 51						
0/3/2000 8/3/2006	T_21S		0.31 15 51						
8/3/2000	T-46W		10.31						
8/3/2000	T-47W		10.34						
8/3/2000	T-45W		11.14						
8/3/2006	TLW-1		12.39		Checked for DNAPL, but it was not present.				

Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio									
Millard Road Landfill SWMU 5									
0.00.00.00.00									
8/8/2006	T-20S(1)		5.49						
8/8/2006	T-20S (2)	14.38	14.395	0.015	Checked for DNAPL, but it was not present.				
8/8/2006	T - 20S(3)		0.40						
8/8/2006	$T_{-20S}(4)$ $T_{-20S}(5)$	6.83	10.J	0.03	Checked for DNAPL but it was not present				
8/8/2006	T-205 (5)	0.05	14 22	0.05	checked for DIVALE, but it was not present.				
8/8/2006	MR-6S		13.19						
8/8/2006	T-20W		8.83						
8/8/2006	T-21S		15.61						
8/8/2006	T-46W		10.53						
8/8/2006	T-47W		14.49						
8/8/2006	T-45W		11.97						
8/8/2006	TLW-1		12.91						
0/10/200	T 2 00 (1)								
8/10/2006	T-20S(1)		5.38						
8/10/2006	1-20S(2) T 20S(2)	14.31	14.32	0.01	Checked for DNAPL, but it was not present.				
8/10/2006	$T_{-20S}(3)$ $T_{-20S}(4)$		10.44						
8/10/2006	T-205 (4)	6.87	6.89	0.02	Checked for DNAPL but it was not present				
8/10/2006	T-20S (6)		14.19		checked for Drvin E, out it was not present.				
8/10/2006	MR-6S		13.24						
8/10/2006	T-20W		8.87						
8/10/2006	T-21S		15.6						
8/10/2006	T-46W		10.54						
8/10/2006	T-47W		14.41						
8/10/2006	T-45W		12.02						
8/10/2006	TLW-1		12.81						
10/24/2006	T 200 (1)		5.26						
10/24/2006	1-20S(1)		5.26						
10/24/2006	$T_{205}(2)$ $T_{205}(3)$	14.14	6.13	0.01					
10/24/2006	T-20S(3) T-20S(4)		10.22						
10/24/2006	T-20S (5)	6.15	8.56	2.41	Bailed down NAPL				
10/24/2006	T-20S (6)		14.02						
10/24/2006	MR-6S		13.17						
10/24/2006	T-20W		8.52						
10/24/2006	T-21S		15.08						
10/24/2006	T-46W		10.98						
10/24/2006	T-47W		14.1						
10/24/2006	T-45W		10.37						
10/24/2006	ILW-I		10.87						
10/26/2006	$T_{20}S(1)$		6 37						
10/26/2006	T-20S(1) T-20S(2)	 15 27	15 28						
10/26/2006	T-20S(2)	1.5.27	6 33						
10/26/2006	T-20S (4)		10.64						
10/26/2006	T-20S (5)	6.74	6.78	0.04					
10/26/2006	T-20S (6)		14.14						
10/26/2006	MR-6S		13.25						
10/26/2006	T-20W		8.51						
10/26/2006	T-21S		15.33						
10/26/2006	T-46W		10.76						

Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio								
				Millard Road Land	dfill SWMU 5			
10/26/2006	T-47W		14.32					
10/26/2006	T-45W		10.37					
10/20/2006	T 0 0 C (1)							
10/30/2006	T-20S(1)		5.54					
10/30/2006	T = 20S(2)	14.4	14.41	0.01				
10/30/2006	T - 20S(3) T 20S(4)		10.15					
10/30/2006	T-205 (4)	6.27	6 28	0.01				
10/30/2006	T-20S (6)		13.78					
10/30/2006	T-20S (7)		7.4		DTB from TOC is 17.47'			
10/30/2006	T-20S (8)		13.37		DTB from TOC is 20.33'			
10/30/2006	MR-6S		13.19					
10/30/2006	T-20W		8.23					
10/30/2006	T-21S		14.8					
10/30/2006	T-46W		10.54					
10/30/2006	T-47W		13.19					
10/30/2006	T-45W		10.37					
10/30/2006	TLW-1		10.37					
11/1/2006	T-20S(1)		5.67		Time: 1301			
11/1/2006	T-20S (2)	14.56	14.57	0.01	Time: 1312			
11/1/2006	1-20S (3)		0.18		Time: 1259			
11/1/2006	T-205 (4)		6 25		Time: 1209			
11/1/2006	T-205 (5)	0.15	13.94	0.2	Time: 1253			
11/1/2006	T-20S(0) T-20S(7)		7.5		Time: 1306			
11/1/2006	T-20S(8)		11.94		Time: 1303			
	(-)							
8/27/2007	T-20S (1)		5.72		Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (2)	15.39	15.45	0.06	Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (3)		6.33		Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (4)		10.41		Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (5)	6.62	6.86	0.24	Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (6)	14.94	14.95	0.01	Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (7)		7.69		Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	T-20S (8)		10.26		Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	MK-65	14.72	14.73	0.01	Wells were checked for DNAPL. No DNAPL was present			
8/27/2007	1-215 TLW 1		15.12		Well is missing, presumed destroyed			
8/2//2007	1 L VV - 1				wen is missing, presumed destroyed.			
				SWMU 5 LNAPL F	Bail-down Test			
				Strine 5 Entri E E	Time: 1720 No FP or sheen noted on purged water, will not include in			
8/27/2007	MR-6S	14.72	14.73	0.01	bail-down test.			
8/27/2007	T-20S (2)	15.42	15.45	0.03	Time: 1725			
8/27/2007	T-20S (5)	6.62	6.86	0.24	Time: 1748			
8/27/2007	T-20S (6)	14.96	14.97	0.01	Time: 1740			
8/27/2007	T-20S (2)	15.98	15.99	0.01	Time: 1800			
8/27/2007	T-20S (5)	6.8	6.84	0.04	Time: 1752			
8/27/2007	T-20S (6)	15.3	15.31	0.01	Time: 1807			
	T A C C C		2	-	T. 1000			
8/27/2007	T-20S (2)	15.96	15.97	0.01	Time: 1830			
8/27/2007	T-20S (5)	6.68	6.72	0.04	11me: 1812			
8/27/2007	1-208 (6)	15.32	15.33	0.01	11me: 1821			

Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio Millard Road Landfill SWMU 5									
11/28/2007 T-20S (1)		6.5		Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (2)	14.92	15.30	0.38	Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (3)		7.27		Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (4)		11.10		Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (5)	4.80	6.50	1.70	Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (6)	15.80	16.20	0.40	Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (7)		7.80		Wells were checked for DNAPL. No DNAPL was present					
11/28/2007 T-20S (8)		11.90		Wells were checked for DNAPL. No DNAPL was present					
	Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio Millard Road Landfill - SWMU 5								
----------	--	-----------	------------	----------------	--	--	--	--	--
		Depth to	Depth to	LNAPL					
Date	Well	NAPL (ft)	Water (ft)	Thickness (ft)	Comments				
	T-20S (1)		5.53		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (2)	15.5	15.83	0.33					
	T-20S (3)		5.95		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (4)		10.11		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (5)	6.06	6.79	0.73					
	T-20S (6)	14.93	15.09	0.16					
6/2/2010	T-20S (7)		7.46		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (8)		11.95		Wells were checked for DNAPL. No DNAPL was present				
	MR-6S		14.76						
	T21S		15.36		Wells were checked for DNAPL. No DNAPL was present				
	T20W		8.18		Well is missing, presumed destroyed.				
	T45W		12.15						
	T46W				Unable to locate, presumed abandoned.				

	Table 3b				
				ES	Or other Creek Facility Oregon, Ohio
		Depth to	Depth to	LNAPL	la Oli Pond - SWMU 8
Date 7/13/2006	Well T-33S	NAPL (ft) 14.91	Water (ft) 15.97	Thickness 1.06	Comments Sampled on July 14, 2006, effectively removing the NAPL layer
7/25/2006	T-33S	14.92	15.74	0.82	
7.00000	T 226	15.02	10.14	0.02	
7/26/2006	1-335	15.92	18.14	2.22	
8/1/2006 8/1/2006	T-33S S8-206	14.82 2.08	16.91	2.09	
8/1/2006	S8-207		4.31		
8/1/2006	Butz Crock		1.69		Discontinous oil noted on water surface and coated the probe; no measurable product
8/3/2006	T-33S	14.71	16.39	1.68	
8/3/2006 8/3/2006	\$8-206 \$8-207	1.65	4.16	0.84	
8/3/2006	Butz Crock		1 73		Discontingues oil noted on water surface and coated the probe tip: no measurable product
3/3/2000	Butz Clock		1.75		Discontinuous on noted on water surface and coaled the probe up, no measurable product.
8/8/2006 8/8/2006	T-33S S8-206	15.28	16.58	1.3	Checked for DNAPL, but it was not present.
8/8/2006 8/8/2006	S8-207 Butz Crock	3.79	4.94	1.15	Checked for DNAPL, but it was not present.
8/10/2006	т 335	15.02	16 20	1.25	Chackad for DNADI but it was not present
8/10/2006	S8-206		5.1		CIRCINCULOI DIVITI L., UULIL WAS HOL DESCHI.
8/10/2006 8/10/2006	S8-207 Butz Crock	4.36	5.69 2.04	0.01	Checked for DNAPL, but it was not present.
10/24/2006	T-338	14.48	14 69	0.21	
10/24/2006	TLW-201	6.68	7.8	1.12	
10/24/2006	TLW-202 Butz Crock	6.11	2.06	8.03	
10/26/2006	T-33S	14.99	15.32	0.33	
10/26/2006	TLW-201	6.66		6.75	
10/26/2006	Butz Crock	2.06	2.07	0.75	
10/30/2006	T-33S	14.53	14.86	0.33	
10/30/2006	TLW-201 TLW-202	6.69 5.59	6.7	0.01	
10/30/2006	Butz Crock	2.14	2.15	0.01	
10/30/2006	S8-205 S8-204		26.67		DTB from TOC is 27.14 DTB from TOC is 27.02
10/30/2006	TLW-204	7.15			DTB is 21.0'
10/31/2006	TLW -204	7.14	7.15	0.01	
10/31/2006	TLW -205	8.74	22.64	13.9	
10/31/2006	TLW -207	6.54	12.93	6.39	
11/1/2006	TLW -204	7.29	7.31	0.02	Time: 0808
11/1/2006	TLW -205	7.7	to bottom		Time: 0812
11/1/2006	TLW -207 TLW -204	7.29	13.5	6.21	Time: 0817 Time: 0855
11/1/2006	TLW -205 TLW -207	8.21 8.28			Time: 0902 Time: 0907
11/1/2006	TLW -206	9.49			Time: 0919
11/1/2006	TLW -204 TLW -205	8.16			Time: 0927
11/1/2006 11/1/2006	TLW -207 TLW -204	6.9 7.5			Time: 0930 Time: 1211
11/1/2006	TLW -205	7.95			Time: 1213 Time: 1225
11/1/2006	TLW -200	6.23			Time: 1220
11/1/2006 11/1/2006	TLW -201 TLW -202	5.78	6.82 12.43	6.65	Time: 1231
11/1/2006	AOC7	2.85	2.86	0.01	Time: 1238
8/29/2007	TLW-201	5.27			No water level noted.
8/29/2007 8/29/2007	TLW-202 TLW-203	3.8	10.59		
8/29/2007 8/29/2007	TLW-204 TLW-205	5.2			No water level noted. Cannot access due to extreme pressure behind well cap.
8/29/2007	TLW-206	-05			DTP drops to ~0.8' below TOC after approximately 15 minutes. No water lavel noted
8/29/2007	TLW-207	5.7			No water level noted.
6/2/2010	TLW-201		5.78		
6/2/2010 6/2/2010	TLW-202 TLW-203	4.05	11.83 13.21	7.78	
6/2/2010	TLW-204	7.47	14.18	6.71	No water level noted.
6/2/2010 6/2/2010	TLW-205 TLW-206	10.39	10.42	0.03	Access only after bleeding pressure with 1-valve for approx. 20-minutes. Unable to obtain accurate measurement, O/I probe readings fluctuate at depth.
6/2/2010	TLW-207	8.47	12.88	4.41	
6/2/2010	T-33S	14.09	24.11	10.02	No fire and det noted
6/2/2010	1-208 T-209		13.27		No free product noted.

Table 3b: LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio Old Oil Pond - SWMU 8							
		Depth to	Depth to	LNAPL	Pressure		
Date	Well	NAPL (ft)	Water (ft)	Thickness	(psi)	Comments	
	TLW-201		5.78		0		
	TLW-202	4.05	11.83	7.78	0		
	TLW-203		13.21		0		
6/2/2010	TLW-204	7.47	14.18	6.71	0	No water level noted.	
	TLW-205	10.39	10.42	0.03	3.5	Access only after bleeding pressure with T-valve for approx. 20-minutes.	
	TLW-206	2.02	22	19.98	0	Unable to obtain accurate measurement, O/I probe readings fluctuate at depth.	
	TLW-207	8.47	12.88	4.41	0		
	T-33S	14.09	24.11	10.02	N/A		
6/2/2010	T-208		13.27		N/A	No free product noted.	
	T-209		17.98		N/A	No free product noted.	

Table 4a Summary of Physical Properties T20S(5) Non-Aqueous Phase Liquid ESOI Otter Creek Facility Oregon, Ohio					
LOCATION ENVIRON Sample ID Matrix Sample Date Comments		T-20S (5) SWMU5-T20S5-NAPL NAPL 02-Jun-10			
Physical Properties	Units				
Specific Gravity/Bulk Density	NONE	0.95			
Viscosity @ 60F	CST	529.5			
Viscosity @ 77F	CST	254.8			
Viscosity @ 104F	CST	98.16			
Viscosity @ 194F	CST	13.54			
Viscosity @ 212F	CST	10.43			
Abbreviations:					

CST: Centistokes

Table 4b Summary of Physical Properties Non-Aqueous Phase Liquid ESOI Otter Creek Facility Oregon, Ohio

LOCATION		AOC 7	COMP_SWMU9	T-20S (5)	T-33S	TLW-202
ENVIRON Sample ID		AOC7-NAPL-060726	SWMU9-NAPL-061101-C	T20S5-NAPL-060726	T33S-NAPL-060714	TLW202-NAPL-060726
Matrix		NAPL	NAPL	NAPL	NAPL	NAPL
Sample Date		26-Jul-06	01-Nov-06	26-Jul-06	14-Jul-06	26-Jul-06
Comments						
Physical Properties	Units					
Specific Gravity/Bulk Density	NONE	0.99	0.93	0.97	0.93	0.98
Viscosity (Initial)	CST	5549.82 @60F	25.43 @60F	518.46 @60F	53.04 @15.6C	107.44 @60F
Viscosity (Secondary)	CST	2086.92 @77F	17.19 @77F	244.72 @77F	33.2 @25C	62.74 @77F
Viscosity (Initial)	SUS	25646.3 @60F	121 @60F	507.8 @60F	245.9 @15.6C	496.7 @60F
Viscosity (Secondary)	SUS	9653.9 @77F	86.1 @77F	1132.1 @77F	155.7 @25C	290.8 @77F

Abbreviations:

CST: Centistokes

SUS: Saybolt Universal Seconds

Photo 1: SWMU 5 – looking west to tree line at Otter Creek.

Photo 2: SWMU 5 – looking north, Millard Avenue Overpass in background.

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 5: Standpipe – SWMU 7

Photo 7: Drainage Ditch – SE corner of SWMU 6

Photo 8: Drainage Ditch – SE corner of SWMU 6

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 9: SWMU 1 – regraded cap area

Photo 10: SWMU 1 – regraded cap area

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 11: SWMU 1 – regraded cap area

Photo 12: SWMU 1 – regraded cap area

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 13: SWMU 1 – Leachate collection sump

Photo 14: SWMU 1 – w/Millard Avenue Overpass in background.

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 15: SWMU 1 – w/Millard Avenue Overpass in background.

Photo 16: SWMU 6 – northeast corner

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 19: SWMU 9 – Building C in background.

Photo 20: SWMU 9 – looking southeast.

Title:	Site Photographs	Date: 10/27/2010	
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B	
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON	

Photo 21: SWMU 9 looking east

Photo 22: SWMU 9 – stained vent pipe.

Title:	Site Photographs	Date: 10/27/2010	
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B	
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON	

Photo 23: SWMU 9 – stained area and ponding.

Photo 24: SWMU 9 – stained vent pipe.

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 25: SWMU 9 – stained area.

Photo 26: SWMU 9 – standing water

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Title:	Site Photographs	Date: 10/27/2010 Project-No.: 02-6471M14B	
Site:	ESOI Otter Creek		
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON	

Photo 29: SWMU 8 – TLW-205 location.

Photo 30: SWMU 8 – O/I probe tip after measurement at TLW-205.

Title:	Site Photographs	Date: 10/27/2010
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON

Photo 31: SWMU 8 – O/I probe tip after measurement at TLW-205.

Photo 32: NAPL sample collected from T20S(5).

Title:	Site Photographs	Date: 10/27/2010	
Site:	ESOI Otter Creek	Project-No.: 02-6471M14B	
Client:	Envirosafe Services of Ohio, Inc.	ENVIRON	

APPENDIX B

Amended Portions of Section F of Envirosafe's Part B Permit Procedures to Prevent Hazards

Envirosafe Part B Permit Application Date: April 27, 2009 Modification No.: 026

F-4a General Hazards	F-36
F-4a(1) Ignitable Wastes	F-36
F-4b Handling Procedures to Prevent Hazards	F-37
F-4b(1) Ignitable Wastes	F-38
F-4b(2) Reactive Wastes	F-39
F-4b(3) Incompatible Wastes	F-40
F-4c Management Practices	F-40
F-4c(1) Containerized Ignitable Wastes	F-40
F-4c(2) Containerized Reactive Wastes	F-41
F-4c(3) Bulk Liquid Non-Hazardous Wastes (Tank Storage)	F-41
F-4c(4) Landfill Disposal of Ignitable Solid Wastes	F-43
F-4c(5) Landfill Disposal of Reactive Solid Wastes	F-43
F-4c(6) Incompatible Waste Management	F-44
F-4c(7) Specific Ignitable/Reactive Waste Procedures	
for Stabilization	F-45
F-4c(7)(a) Ignitable Wastes	F-45
F-4c(7)(b) Reactive Wastes	F-46
F-4c(7)(c) Reactivity/Compatibility	F-46
F-4c(7)(d) Waste Protection	F-47
F-4c(7)(e) Corrective Action Areas	F-47
F-4d Personal Protective Equipment	F-47 <u>48</u>

Tables

F-1	Inspection Frequency ScheduleF-14
F-2	Typical Uses of General Purpose Decontamination SolutionsF-35

Figures

F-1	Typical Gate PassF	-9
F-2	Facility Map and Location of GatesF-1	0

Envirosafe Part B Permit Application Date: April 27, 2009 Modification No.: 026

F-3	Typical Vehicle Inspection Form	. F-11
F-4	Typical Container Storage Record	.F-42
F-5	Typical Bulk/Containerized Waste Disposal Record	. F-42
<u>F 6</u>	Observed NAPL Areas and Potentially Significant Groundwater Exposure	<u>. F-49</u>

Appendices

- F.1 Reserved
- F.2 Reserved
- F.3 Reserved
- F.4 Reserved
- F.5 Reserved
- F.6 General Site Inspection Forms
 - Daily: MF-02(a) (General Site & Landfill Area Daily Inspection)
 - Weekly: MF-05 (Scale Area Weekly Inspection)

MF-06 (Gates & Fences Weekly Inspection)

MF-07 (Container Storage Areas Weekly Inspection)

MF-09(a) (Landfill Area Weekly Inspection)

Annual: F-21 (Primary & Secondary Riser Pipes w/o Inserts)

F.7 Storage Tank Inspections

MF-03(a) (Leachate Storage Building Daily Inspection)

- MF-17(c) (Wastewater Tank 403-404-LAB Daily Inspection Form)
- MF-18(b) (F039 Leachate Tank Inventory Control Log)
- Weekly: MF-04(a) (Leachate Storage Building Weekly Inspection)
- F.8 Railcar Inspections

Daily:

Daily*: MF-16(a) (Railcar Inbound Inspection)

MF-16(b) (Railcar Outbound Inspection)

- Weekly: MF-16(c) (Rail Line Weekly Inspection)
- * Days on which there is rail activity, only
- F.9 Post-Closure Inspections

F-4c(7)(d) Waste Protection

Waste stored in storage areas will be removed and placed into the disposal/stabilization process as soon as possible in accordance with the Operations Schedule.

Unprotected wastes that are water reactive will be prohibited in storage areas located inside and outside of the Stabilization/Containment Building.

Dust generating waste within the area will be managed through the addition of water, admix or controlled misting to minimize the generation of dust. As required, waste within storage areas located inside and outside of the Stabilization/Containment Building will be covered with a compatible inert cover. (See Subsection F-4, "Prevention of Reaction of Ignitable, Reactive, and Incompatible Wastes")

F-4c(7)(e) Corrective Action Areas

The baseline human health risk assessment in the *Final RFI Report* for the ESOI Otter Creek Road Facility (ENVIRON International Corporation, Revised June 3, 2009) identified the need for corrective measures to address the following potential exposures in which the risk assessment conservatively assumed that workers do not use personal protective equipment, as shown on Figure 5-1 of the *Corrective Measures Study Work Plan* (Envirosource, ENVIRON, Revised December 31, 2009), which is included herein:

- AOC 7: potential exposure of on-site outdoor routine facility workers to
 <u>NAPL within Butz Crock.</u>
- SWMU 5: potential exposure of on-site outdoor routine facility workers to
 NAPL identified in subsurface soil.

- SWMUs 5 and 6: potential exposures of on-site maintenance workers to ground water. .
- SWMU 6: potential exposures of on-site outdoor routine facility workers
 to leachate seeps at SWMU 6.
- SWMU 8: potential exposure of on-site outdoor routine facility workers
 and on-site maintenance workers to NAPL seeps and shallow
 groundwater..
- SWMU 9: potential exposure of on-site outdoor routine facility workers to
 <u>NAPL seeps.</u>

All of the areas listed above are being addressed as part of the Corrective Measures Proposal for the Facility. The implementation of corrective measures is intended to mitigate these potential exposures summarized above. While it is not believed that any individual will have actual exposures that are as high as those assumed in the risk assessment, personal protective equipment is required when work in these areas may result in exposure to the contaminated media, until it has been confirmed that the implemented corrective measures have mitigated the potential for these exposures. Personnel protective equipment requirements to prevent potential exposure to the media identified above are a modified Level D ensemble, as follows:

- long sleeve shirts and long pants,
- eye protection with side shields,
- safety shoes, and
- chemical resistant gloves.

F-4d Personnel Protective Equipment

Specific dress or personnel protective equipment is required for all disposal areas, storage areas, and process areas whenever there is a reasonable probability that an injury could be prevented by such equipment and as required by the area supervisor

SP 12/29/10 [026174M13_C04]

APPENDIX C

Supporting Documentation for CM Analysis – Leachate Management

CONTENTS

Pre-Treatment Conceptual Design Cost Estimates - Leachate Management Alternatives **Pre-Treatment Conceptual Design**

Introduction

The existing leachate extraction system at ESOI consists of a network of nine recovery/ extraction wells at former landfills SWMU 5 (Milard Road Landfill), SWMU 6 (Northern Sanitary Landfill), and SWMU 7 (Central Sanitary Landfill). Leachate within the recovery wells is pumped using submersible pumps to on-site temporary storage tanks. The stored leachate is periodically trucked for off-site treatment at the City of Toledo's Publicly Owned Treatment Works (POTW).

This technical memorandum focuses on the feasibility of constructing an on-site plant for pretreatment of leachate extracted from SWMU's 5, 6, and 7. The treated leachate could either be discharged to the local sanitary sewer system for further treatment at the City of Toledo POTW.

Estimation of Leachate Loadings:

For the purpose of this evaluation, leachate generation rates were estimated based on the historical (i.e., July 2007 to May 2010) volume of leachate pumped from recovery wells in SWMUs 5, 6, and 7. Based on the available information and as summarized in Table 1, collectively the average annual leachate generated from all SWMUs is 0.65 million gallons (MG) and maximum annual leachate generated from all three SWMUs is 1.1 MG.

	SWMU 5 (gal/ year)	SWMU 6 (gal/ year)	SWMU 7 (gal/ year)	Total Volume (million gallons)
2007	174,305	451,798	429,419	1.1
2008	203,802	281,357	347,931	0.8
2009	144,622	138,973	123,587	0.4
2010	59,886	118,747	67,376	0.2
Annual Average	145,654	247,719	242,078	0.6
Annual Maximum	203,802	451,798	429,419	1.1

Table 1: Historical Leachate Generation from SWMUs 5, 6, & 7

Leachate Characterization:

The characteristics of leachate presented in the following table (Table 2) are based on the leachate sampling conducted in October 2008.

Parameters	Result (mg/L)
Volatile Organic Compounds	
Acetone	0.78
Acetonitrile	0.06
Benzene	0.013

Table 2: Waste Characteristics of Leachate from SWMUs 5, 6, & 7

Parameters	Result (mg/L)
2-Butanone	0.068
Chlorobenzene	0.014
1,4-Dioxane	8.5
Isobutyl alcohol	0.62
Methylene chloride	0.027
4-Methyl-2-pentanone	0.041
Tetrahydrofuran	0.045
Toluene	0.0052
Xylenes (total)	0.0066
n-Butyl alcohol	7.0
Semi Volatile organic compounds	
1,4-Dioxane	5.4
3-Methylphenol	0.13
4-Methylphenol	0.13
Phenol	0.86
Non halogenated Organics	
Methanol	0.032
Organochlorine Pesticides	
beta-BHC	0.0028
Chlordane (technical)	0.0067
4,4'-DDE	0.0015
Polychlorinated Biphenyl's (PCBs)	
PCBs	ND
Organophosphorous Compounds	
Organophosphorous Compounds	ND
Chlorinated Herbicide	
Chlorinated Herbicides	ND
Metals	
Arsenic	0.703
Lead	0.507
Antimony	0.152
Selenium	0.396
Mercury	0.0003
Silver	0.0022
Chromium	0.039.8
Nickel	0.615
Vanadium	0.269
Zinc	0.0533 J

Table 2: Waste Characteristics of Leachate from SWMUs 5, 6, & 7

Parameters	Result (mg/L)
General Chemistry	
Cyanide Amenable to	0.41
Cyanide, Total	3.1
Fluoride	15.1
Total Sulfide	4.0
рН	9
Phthalic Acids/ anhydrides	3.2
BOD	NA
COD	NA
Ammonia-Nitrogen	NA
Chloride	NA

Table 2: Waste Characteristics of Leachate from SWMUs 5, 6, & 7

Leachate from the SWMUs was composited and analyzed for organic compounds (VOCs and SVOCs, PCBs, organic phosphates, pesticides, and herbicides) and inorganics (heavy metals, cyanide, fluoride, and phthalates). As shown in Table 2, several VOCs, SVOCs and metals were detected in the leachate. Herbicide, pesticides, PCBs, organic phosphates were not detected. The pH of the leachate was 9 which is indicative of aged landfills (older than 5 to 10 years). In the absence of analytical data for other typical leachate parameters like BOD, COD, TDS, TSS, and alkalinity; and given that leachate is extracted from aged landfills, it was assumed that the extracted leachate have low biodegradability (ratio of BOD5 to COD < 0.5) value.

In accordance to Ohio EPA and 40 CFR Part 403, all indirect discharges to a POTW or any tributary sewer line of the POTW is to be pre-treated to meet pretreatment discharge limitations of the specific local wastewater treatment plant (WWTP). The pretreatment standards for City of Toledo's POTW are presented in Table 3.

Parameters	mg/L
Benzene	0.14
тто	2.1
PCBs (total)	0.007
Arsenic	0.85
Cadmium	0.3
Chromium (total)	0.8
Copper	1.0
Cyanide (total)	4.2
Lead	1.5
Mercury	0.2
Nickel	2.9
Silver	0.2
Zinc	6.3

Table 3: City of Toledo's Pretreatment Standards

Parameters	mg/L
рН	5-12
TPH	0.25
Toluene	1.36
Ethyl benzene	1.59
Xylene	0.41

Table 3: City of Toledo's Pretreatment Standards

Based on the leachate characterization, concentrations of total toxic organics (TTOs), arsenic, and total cyanides exceed the POTW pretreatment discharge standards.

Most recent leachate characterization data available from April 2010 from ESOI's ongoing semiannual monitoring, indicated that the concentrations of metals, cyanide, and TTOs from SWMUs 5, 6, and 7 meet the City of Toledo's pretreatment standards.

Proposed Pretreatment

To handle the current maximum annual leachate generation of 1.1 MG, and assuming standard work hour batch operation (5 days a week, 8 hours a day), the minimum capacity of the leachate pretreatment system should be 10 gpm. Considering potential future improvements to the collection system that would yield higher volumes and fluctuations inherent in leachate collection systems, the pretreatment system will be sized to treat a maximum of 20 gpm.

Based on the POTW treatment requirements and analytical data available, the primary treatment process for this leachate will be physico-chemical. In case of direct discharge of treated leachate into receiving waters, extensive onsite treatment is needed with respect to metals and organic constituents. In such cases, in addition to physical and chemical treatment, biological (aerobic/ anaerobic) treatment is required.

Conceptually the pretreatment process will consist of primary settling tanks, rapid mix tanks for flash mixing of chemicals for pH adjustment and coagulation of heavy metals and cyanide, flocculation tanks, primary and secondary inclined plate settling tanks, pH adjustment back to neutral, sand filtration for suspended solids control, GAC adsorption for removal of organics, and effluent storage. The pretreatment will also include chemical feed systems, oil skimmers, sludge removal, and filter press for dewatering of sludge.

The influent leachate will be conveyed to primary settling tanks, where heavier solids like grit sink and lighter substances like oil and grease float. Primary settling tanks will be equipped with oil skimmers to remove floating oil and scum. The primary settling tanks also provide leachate flow and load equalization. Influent from the primary tanks will then be pumped to a two stage rapid mix tank where caustic soda and ferric sulfate are added to the flow prior to settling tanks for pH adjustment and as a coagulant, respectively. Fine flocs formed in the flash mixers will agglomerate in the flocculation tanks and following flocculation, the heavier particles will be settled out on inclined settling plates. The settled particles will be stored in a hopper located directly underneath the settling plates. The clarified effluent will then flow to a collection tank where it will be neutralized and pumped to sand filters for removal of remaining unsettled fine suspended solids. Effluent from the sand filters will then enter the GAC vessels for adsorption of organics. The treated effluent will then be stored in effluent storage tanks from where it will be discharged to POTW sewer line or surface water.

The sand filter, GAC vessels will require periodic backwashing. The settled sludge from primary clarifiers, inclined plate hoppers will be periodically withdrawn and stored in sludge tanks where polymers will be added for further thickening of the sludge. The thickened sludge will then be dewatered through belt filter press and the cake staged in bins or boxes for disposal.

The pretreatment system would occupy an area of approximately 50 x 50 square-feet space. A process flow diagram of the conceptual treatment system is included as Figure 1.

Cost Estimates - Leachate Management Alternatives
Cost Estimates for Leachate Pretreatment System ESOI Otter Creek Facility, Oregon, Ohio

Current (Off-Site Transportation and Disposal): Leachate Disposal at POTW

Scope and Assumptions

Leachate Disposal at City of Toledo POTW via trucking:

Assume average annual leachate collection from SWMUs 5,6, and 7: 0.7 MG

-- Leachate is trucked to a manhole on Berlin Ave (~ 1.5 miles from Site)

-- Net present costs are based on a discount rate of 2.7 % and 30 yrs of operation

-- No associated capital costs

Transportation and Disposal Cost Item Description Quantity Unit Unit Cost Total 1 Total Annual Transportation of Leachate million gallons \$23,800 0.7 \$0.03 2 Total Annual Disposal of Leachate 0.7 million gallons \$0.06 \$44,660 \$941 3 Annual Sampling Cost \$2,000 2 ea Annual Transportation and Disposal Cost \$70,460 CURRENT (OFF-SITE T&D), TOTAL COST \$2,114,000 \$1,440,000 CURRENT (OFF-SITE T&D), NPV

ENVIRON

Cost Estimates for Leachate Pretreatment System ESOI Otter Creek Facility, Oregon, Ohio

Alternative 1: Leachate Disposal via Direct Connection to Sanitary Sewer

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

Leachate Disposal via Direct Connection to Sanitary Sewer:

- -- Discharge to POTW via direct sewer connection (without pretreatment)
- -- Possible sanitary sewer connection located within City of Toledo
- -- Assume leachate pumping rate of 20 gpm
- -- Assume two 3000 gallon leachate holding tanks

-- Operation costs include treated effluent monitoring and POTW's leachate disposal cost

-- Assume average annual leachate collection from SWMUs 5,6 and 7: 0.7 MG

Capital Costs

Item	<u>Component</u>	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>
1	Trench Excavation and Backfilling	556	CY	\$33	\$18,100
4	Compaction	556	CY	\$11	\$5,800
5	Grading	3,750	SF	\$6	\$23,000
6	4" HDPE pipe	2,500	LF	\$9	\$22,100
7	Centrifugal pump (20 gpm)	1	ea	\$2,485	\$2,500
8	Leachate Holding Tanks (3000 gallon)	2	ea	\$4,890	\$9,800
9	Sewer connection fee	1	ea	\$5,500	\$5,500
10	Manhole sewer connection at 30 feet bgs	1	ea	\$40,000	\$40,000
	Total Equipment Cost				\$127,000

Engine	Engineering and Contingency										
<u>Item</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total						
1	Engineering and Permitting (12%)	1	LS	\$15,240	\$15,240						
2	Construction Quality Assurance (10%)	1	LS	\$12,700	\$12,700						
3	Contingency (20%)	1	LS	\$25,400	\$25,400						
	Subtotal				\$53,000						

TOTAL CAPITAL COSTS

\$180,000

Operati	ing, Monitoring and Maintenance Cost					
<u>Item</u>	Description_	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>	
1	Sampling Costs (2 per annum)	2	ea	\$945.70	\$2,000	
2	Annual Disposal of Leachate	0.7	million gallons	\$0.06	\$44,660	
	Annual Operation and Maintenance Cost				\$47,000	
TOTAL OPERATION AND MAINTENANCE						
		NPV OPI	ERATION AND M	AINTENANCE	\$957,995	

ALTERNATIVE 1, TOTAL COST \$1,590,000 ALTERNATIVE 1, NPV \$1,138,000

Alternative 2: Leachate Pretreatment System (SWMU 5, 6, and 7)

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Leachate Pretreatment System

- /	Assume	maximum	annual	leachate	collection	from	SWMUs	5,6	and	7: 1	.1 N	ИG
-----	--------	---------	--------	----------	------------	------	-------	-----	-----	------	------	----

-- Pretreatment system sized to treat 20 gpm

-- Assume standard work hour operation (5 days a week, 8 hours a day)

-- Pretreated leachate is discharged to POTW via sewer connection

-- POTW disposal costs for pretreated leachate assumes 25% reduction in current disposal costs.

-- Net present costs are based on a discount rate of 2.7% and 30 yrs of operation

Capital Costs

<u>Item</u>	<u>Component</u>	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>
1	Equilization/ Effluent tanks	2	3000 gallon	\$4,900	\$9,800
2	Inclined Plate Settlers	2	20 gpm	\$106,200	\$212,400
3	Sand Filtration	1	2-ft dia	\$13,200	\$13,200
3	Granular Activated Carbon (LGAC)	2	20 gpm	\$3,700	\$7,400
4	Neutralization System	1	20 gpm	\$36,400	\$36,400
5	Centrifugal Feed Pumps	2	20 gpm series	\$2,500	\$5,000
6	Transfer/Backwash Pumps	2	20 gpm series	\$2,200	\$4,400
7	Thickening and Dewatering	1	1 CF filter press	\$30,800	\$30,800
8	Chemical Feed Systems	1	ea	\$20,000	\$20,000
9	Yardpiping and Site Work	1	percentage	\$152,730	\$152,700
10	Direct Connection to Sanitary Sewer	1	project	\$127,000	\$127,000
	Total Equipment Cost				\$619,000

	Engineering and Contingency									
Description_	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>						
g and Permitting (12%)	1	LS	\$74,280	\$74,280						
on Quality Assurance (10%)	1	LS	\$61,900	\$61,900						
y (20%)	1	LS	\$123,800	\$123,800						
				\$260,000						
	<u>Description</u> g and Permitting (12%) on Quality Assurance (10%) cy (20%)	DescriptionQuantityg and Permitting (12%)1on Quality Assurance (10%)1cy (20%)1	DescriptionQuantityUnitg and Permitting (12%)1LSon Quality Assurance (10%)1LScy (20%)1LS	DescriptionQuantityUnitUnit Costg and Permitting (12%)1LS\$74,280on Quality Assurance (10%)1LS\$61,900cy (20%)1LS\$123,800						

TOTAL CAPITAL COSTS

\$879,000

Annual	Operation and Maintenance							
Item	Description	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	Total			
1	Annual Operation and Maintenance	1	percentage	\$87,900	\$87,900			
2	Annual Disposal of Leachate	0.7	million gallons	\$0.05	\$33,495			
3	Sampling Costs (2 per annum)	2	ea	\$946	\$2,000			
	Annual Operation and Maintenance Co	st			\$123,400			
	TOTAL OPERATION AND MAINTENANCE							
		NPV OPER	ATION AND MA	INTENANCE	\$2,515,246			

TOTAL PRETREATMENT SYSTEM COSTS\$4,581,000TOTAL NET PRESENT PRETREATMENT SYSTEM COSTS\$3,395,000

APPENDIX D

Supporting Documentation for CM Analysis - Landfills

CONTENTS

Leachate System Performance Data Standpipe Data Predicted Landfill Cap Performance Off-site Waste Cost Estimates - Landfill Covers Leachate System Performance Data

Leachate Recovery Volumes										
	Rainfall	SWMU 5	SWMU 6	SWMU 7						
Month	(inches)	(gal)	(gal)	(gal)						
Jan-08	2.38	14743	73734	61299						
Feb-08	6.19	35435	26981	77444						
Mar-08	4.15	23717	9028	50528						
Apr-08	3.17	19078	57397	101226						
May-08	2.4	15298	40306	23436						
Jun-08	7.41	15519	47712	48848						
Jul-08	5.93	35187	29252	70843						
Aug-08	0.46	16082	41051	23603						
Sep-08	3.98	20915	35196	28660						
Oct-08	1.32	21225	31159	13336						
Nov-08	3.7	20068	15262	18073						
Dec-08	4.67	19834	22442	16125						
Jan-09	1.56	12236	21654	22038						
Feb-09	3.4	23962	21278	26897						
Mar-09	5.11	19634	29158	19114						
Apr-09	6.89	22190	9001	17304						
May-09	1.7	19572	16009	20083						
Jun-09	3.62	9206	9283	12371						
Jul-09	2.43	13915	12383	5090						
Aug-09	3.05	10026	16887	5209						
Sep-09	1.07	7801	21366	4345						
Oct-09	3.81	11650	20279	24470						
Nov-09	0.8	8123	4541	14098						
Dec-09	3.24	8005	12952	8776						
Jan-10	0.72	5812	12729	10503						
Feb-10	1.89	8742	16759	8150						
Mar-10	3.86	8299	34944	12131						
Apr-10	5.42	39366	35918	65570						
May-10	7.71	97666	37898	51175						
Jun-10	2.05									
Jul-10	4.6									
Aug-10	1.39									
Sep-10										

Standpipe Data

ANALYTICAL REPORT

STANDPIPE INVESTIGATION

Lot #: A0J080623

Sue Richards

Envirosafe Services of Ohio In 876 Otter Creek Road Oregon, OH 43616-3518

TESTAMERICA LABORATORIES, INC.

alesia M. Dareford

Alesia M. Danford Project Manager

October 28, 2010

Approved for release Alesia M. Danford Project Manager 10/28/2010 3:37 PM

alesia.danford@testamericainc.com

TestAmerica Laboratories, Inc. TestAmerica North Canton 4101 Shuffel Street NW, North Canton, OH 44720 Tel (330)497-9396 Fax (330)497-0772 www.testamericainc.com

EXECUTIVE SUMMARY

EXECUTIVE SUMMARY - Detection Highlights

A0J080623

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
STANDPIPE SWALE 10/07/10 11:50 001	-			
Chloride	55.9	1.0	mg/L	MCAWW 300.0A
Demand (COD)	15.9	10.0	mg/L	MCAWW 410.4
STANDPIPE SWMU7 10/07/10 12:00 002	2			
Tetrahydrofuran	80	5.0	ug/L	SW846 8260B
Benzene	32	2.5	ug/L	SW846 8260B
Chlorobenzene	2.5	2.5	ug/L	SW846 8260B
Chloride	208	10.0	mg/L	MCAWW 300.0A
Chemical Oxygen	185	20.0	mg/L	MCAWW 410.4
Demand (COD)				

Predicted Landfill Cap Performance

The Hydrologic Evaluation of Landfill Performance (HELP) model (EPA 1994b) was used to estimate the potential volume of leachate that will be collected from SWMUs 1, 5, 6, and 7 for each corrective measures alternative. For each SWMU and alternative, the precipitation data was synthetically generated for Detroit, Michigan; temperature data was synthetically generated for Toledo, Ohio; and solar radiation data was synthetically generated for Detroit, Michigan but adjusted to the latitude of Toledo, Ohio. Each SWMU was modeled using three different scenarios for cover type and antecedent moisture content: the existing clay cap under steady state moisture conditions, the existing clay cap with an initial soil moisture value of 0.25 in the waste layer, and a composite clay/geomembrane cap with an initial soil moisture value of 0.25 in the waste layer. A complete listing of the HELP model inputs is included in the HELP Inputs Summary and Detailed HELP Inputs (also in this appendix).

The actual leachate collection data from SWMU 1 was compared to the estimated leachate generation rates from the HELP model, and the model was found to over-predict the annual leachate volume by an average factor of 3.7. Therefore, a conservative site-specific adjustment factor of 2.5 was applied to the modeled leachate volumes for SWMU 1 to estimate the cost of leachate treatment and disposal for this unit.

The actual leachate collection data for SWMU 1 was also compared to the leachate generation rates reported for Cells G, H, and I (i.e., the existing landfills having composite covers). This comparison indicated that the average leachate generation rate was approximately 40% lower for the composite cap landfills compared with the clay cap landfill.

HELP Inputs Summary									
ESOI Otter Creek Facility, Oregon, Ohio									
SWMU 1 SWMU 5 SWMU 6 SWMU 7									
Total size (acres)	3.00	8.03	6.43	6.89					
Cover Soil (ft)	1	1	1	1					
Recompacted Soil	3	3	2.5	3					
General Fill	5	7		3					
Waste Thickness (ft)	60	40	50	45					
Waste Thickness (in)	720	480	600	540					
K (cm2/sec)	1.00E-07	3.50E-08	7.66E-08	5.01E-06					
Slope (%)	2	6.5	25	25					
Length (ft)	320	250	175	170					

Detailed HELP Inputs									
					ESOI Otter Creel	<pre>c Facility; Oregon,</pre>	Ohio		
SWMU 1 w	/ clay cap								
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description
1	1	11	12	0.464	0.31	0.187	0.4478	6.40E-05	Cover Soil
2	3	0	36	0.427	0.418	0.367	0.427	1.00E-07	Compacted Barrier Soil
3	1	12	60	0.471	0.342	0.21	0.342	4.20E-05	General Cover
4	1	0	720	0.541	0.187	0.047	0.2031	8.80E-05	Waste
SWMU 5 w	/ clay cap								
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description
1	1	15	12	0.475	0.378	0.265	0.4617	1.70E-05	Cover Soil
2	3	0	36	0.427	0.418	0.367	0.427	3.45E-08	Compacted Barrier Soil
3	1	28	84	0.452	0.411	0.311	0.411	1.20E-06	General Cover
4	1	0	480	0.541	0.187	0.047	0.187	8.90E-05	Waste
SWMU 6 w	/ clay cap								
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description
1	1	15	12	0.475	0.378	0.265	0.4606	1.70E-05	Cover Soil
2	3	0	30	0.427	0.418	0.367	0.427	7.66E-08	Compacted Barrier Soil
3	1	0	600	0.541	0.187	0.047	0.1945	8.90E-05	Waste
SWMU 7 w	/ clay cap								
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description
1	1	15	12	0.475	0.378	0.265	0.4397	1.70E-05	Cover Soil
2	3	0	36	0.427	0.418	0.367	0.427	6.15E-07	Compacted Barrier Soil
3	1	28	36	0.452	0.411	0.311	0.4443	1.20E-06	General Cover
4	1	0	540	0.541	0.187	0.047	0.2302	8.90E-05	Waste

					Detaile	d HELP Inputs				
					ESOI Otter Cree	k Facility; Oregon,	Ohio			
SWMU 1 w	/geomemb	rane liner in cap)							
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description	
1	1	11	36	0.464	0.31	0.187		6.40E-05	Cover Soil	
2	2	20	0.2	0.85	0.01	0.005		10	Drainage Layer	
3	4	35	0.04	0	0	0		2.00E-13	Geomembrane	
4	3	0	12	0.427	0.418	0.367	0.427	1.00E-07	Compacted Barrier Soil	
5	1	12	60	0.471	0.342	0.21	0.342	4.20E-05	General Cover	
6	1	0	720	0.541	0.187	0.047	0.25	8.80E-05	Waste	
SWMU 5 w	/geomemb	rane liner in cap)							
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description	
1	1	11	36	0.464	0.31	0.187		6.40E-05	Cover Soil	
2	2	20	0.2	0.85	0.01	0.005		10	Drainage Layer	
3	4	35	0.04	0	0	0		2.00E-13	Geomembrane	
4	3	0	12	0.427	0.418	0.367	0.427	3.45E-08	Compacted Barrier Soil	
5	1	28	84	0.452	0.411	0.311	0.411	1.20E-06	General Cover	
6	1	0	480	0.541	0.187	0.047	0.25	8.90E-05	Waste	
SWMU 6 w/geomembrane liner in cap										
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description	
1	1	11	36	0.464	0.31	0.187		6.40E-05	6.40E-05 Cover Soil	
2	2	20	0.2	0.85	0.01	0.005		10	Drainage Layer	
3	4	35	0.04	0	0	0		2.00E-13	Geomembrane	
4	3	0	6	0.427	0.418	0.367	0.427	7.66E-08	Compacted Barrier Soil	
5	1	0	600	0.541	0.187	0.047	0.25	8.90E-05	Waste	
SWMU 7 w	/geomemb	rane liner in cap)							
Layer	Туре	Texture #	Thickness (in)	Porosity	Field Capacity	Wilting Point	Initial Soil Water Content	K (cm/sec)	Description	
1	1	11	36	0.464	0.31	0.187	0.4397	6.40E-05	Cover Soil	
2	2	20	0.2	0.85	0.01	0.005		10	Drainage Layer	
3	4	35	0.04	0	0	0		2.00E-13	Geomembrane	
4	3	0	12	0.427	0.418	0.367	0.427	6.15E-07	Compacted Barrier Soil	
5	1	28	36	0.452	0.411	0.311	0.4443	1.20E-06	General Cover	
6	1	0	540	0.541	0.187	0.047	0.25	8.90E-05	Waste	
Geotextile	inputs									
Pinhole de	nsity	1								
Defect den	sity	20								
Installation	Quality	Poor (4)								
Transmissivity		2.032E-14								

WITH CLAY CAP

BKLEIN 1/7/11 [026174M14BD02]

Modeled Leachate Generation - SWMU 1					
ESOI Otter Creek Facility, Oregon, Ohio					
Simulated Leachate Generation (gallons)					
	w/ clay -	w/ clay - initial	initial moisture	Actual	
Year	steady state	moisture 0.25	0.25	(gallons)	
1	54884	470417	509114	31,369	
2	69327	414995	453487	32,614	
3	64060	349058	361393	38,109	
4	77876	301176	299648	36,845	
5	74138	252303	253698	42,603	
6	73523	224994	219801	18,724	
7	73146	194501	193440	8,753	
8	67699	179421	172705	12,349	
9	52155	148345	155013	20,162	
10	72745	156295	141014	14,189	
11	68395	140712	128969	9,104	
12	79941	143169	119095	10,957	
13	66821	121680	109931	15,232	
14	70824	115738	102247	11,960	
15	33513	84863	95439	36,771	
16	110285	153736	89783	35,866	
17	47932	81137	84074	23,702	
18	67614	98274	79484	70,377	
19	51726	83108	75081	30,466	
20	63290	91245	53012	26,970	
21	71832	95530	106	20,619	
22	65022	86983	204	10,746	
23	43150	64055	48		
24	67749	88651	93		
25	111077	127757	0		
26	45387	60914	131		
27	74497	86698	0		
28	72468	86938	96		
29	72724	83542	0		
30	67088	77910	0		
Average	67,696	155,472	123,237		
Size	3.00	3.00	3.00		
Per acre	22,565	51,824	41,079		
					
	Reduction w/lir	ner:	20.7%		

Modeled Leachate Generation - SWMU 5					
ESOI Otter Creek Facility, Oregon, Ohio					
Simulated Leachate Generation (gallons)					
	w/ geomembrane-				
	w/ clay -	w/ clay - initial	initial moisture	Actual	
Year	steady state	moisture 0.25	0.25	(gallons)	
1	55252	1280061	1311660	257,102	
2	69593	1033522	1053130	166,320	
3	61050	782045	782863		
4	51719	628448	619749		
5	58217	509806	507796		
6	68609	425239	429291		
7	67168	369276	370665		
8	71373	330063	326167		
9	65488	290485	289210		
10	59343	274505	259951		
11	51841	248643	235741		
12	57535	234725	215966		
13	65075	205086	191743		
14	85836	178528	0		
15	63788	164372	0		
16	62288	190708	0		
17	64746	151475	0		
18	70409	154440	0		
19	77983	138066	0		
20	56772	135706	0		
21	77371	137538	0		
22	81573	117496	0		
23	82103	106243	0		
24	48354	80808	0		
25	57410	57410	0		
26	61659	61659	0		
27	66260	66260	0		
28	59561	59561	0		
29	66161	66161	0		
30	65338	65338	0		
Average	64,996	284,789	219,798		
Size	8.03	8.03	8.03		
Per acre	8,094	35,466	27,372		
	Reduction w/line		0.228		

Modeled Leachate Generation - SWMU 6						
ESOI Otter Creek Facility, Oregon, Ohio						
Simulated Leachate Generation (gallons)						
	w/ geomembrane-					
	w/ clay -	w/ clay - initial	initial moisture	Actual		
Year	steady state	moisture 0.25	0.25	(gallons)		
1	94779	1028278	1079460	429,520		
2	105054	862286	919319	194,790		
3	105607	700624	710269			
4	125594	589990	576529			
5	115915	478529	480752			
6	108294	401033	411743			
7	89804	352508	359092			
8	106381	332400	318513			
9	84135	277737	284262			
10	113931	283559	256881			
11	108743	255298	234016			
12	130713	259172	215220			
13	101494	212340	198024			
14	99439	193773	183668			
15	63140	156628	171128			
16	163511	258880	160511			
17	77445	145638	40687			
18	114438	179528	0			
19	90425	151554	0			
20	101547	160164	0			
21	114899	163192	0			
22	83707	127082	0			
23	66054	108795	0			
24	87956	135386	0			
25	177668	213825	0			
26	73681	106945	0			
27	119456	146816	0			
28	119755	150273	0			
29	121473	144244	0			
30	102862	128138	0			
Average	105,597	290,154	220,003			
Size	6.43	6.43	6.43			
Per acre	16,422	45,125	34,215			
	Reduction w/lin	ner:	24.2%			

	Modeled Leachate Generation - SWMU 7					
ESOI Otter Creek Facility, Oregon, Ohio						
Simulated Leachate Generation (gallons)						
	w/ geomembrane-					
	w/ clay -	w/ clay - initial	initial moisture	Actual		
Year	steady state	moisture 0.25	0.25	(gallons)		
1	355,300	894,759	1,039,013	533,418		
2	414,363	763,803	1,037,493	179,796		
3	395,702	727,435	771,875			
4	622,922	834,177	611,367			
5	490,113	627,633	501,108			
6	359,284	445,761	423,748			
7	362,023	427,789	365,952			
8	359,131	420,260	322,071			
9	383,028	430,291	285,614			
10	442,609	483,064	256,746			
11	450,714	480,260	232,855			
12	586,090	610,096	213,338			
13	408,794	425,136	195,648			
14	431,340	442,811	180,945			
15	343,317	353,882	151,531			
16	652,545	661,618	0			
17	331,818	337,623	0			
18	485,229	490,334	0			
19	327,766	331,290	0			
20	586,910	590,506	0			
21	356,462	358,221	0			
22	364,902	366,584	0			
23	350,038	351,613	0			
24	552,074	553,623	0			
25	619,615	620,503	0			
26	379,038	379,769	0			
27	471,487	472,030	0			
28	425,955	426,496	0			
29	490,785	491,154	0			
30	397,164	397,434	0			
Average	439,884	506,532	219,644			
Size	6.89	6.89	6.89			
Per acre	63,844	73,517	31,879			
	Reduction w/lin	ner:	56.6%			

Off-Site Waste

BKLEIN F: \026174M13\C3D

Cost Estimates - Landfill Covers

Cap and Storm Water Cost Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 1: SWMU 1 - No Additional Cap Improvements

Cumulative Cost Deflator, 2005 to 2010 -> 1.11617

Scope and Assumptions

-Cap to remain as constructed

TOTAL CAPITAL COSTS

\$()

Long Term Leachate Disposal (30 years)						
<u>Item</u>	Description_	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>	
1	Leachate Disposal	25,073	gallons	\$0.12	\$3,079	
	Annual Operation and Maintenance Cost				\$3,000	

\$61 149
ψ 0 1,145

- ALTERNATIVE 1, TOTAL COST \$90,000
 - ALTERNATIVE 1, NPV \$62,000

Note: NPV calculation using RoR of 2.7%
Cap and Storm Water Cost Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 2: SWMU 1 - Installation of a Composite Cover

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Installation of a composite cover over the entire area of SWMU 1 (3 acres). -Approximately 3-ft of current cover soils would be removed before installing the composite cover. -Geotextile vent layer, covers 30% of the total area.

Cap and Vegetative Cover

<u>ltem</u>	Description_	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>
1	Protective Cover Removal	14,520	1 yd ³	\$5.02	\$72,931
2	Recompacted Clay Liner Installation	0	1 yd ³	\$7.26	\$0
3	40 mil HDPE Liner Installation	130,680	1 ft ²	\$0.56	\$72,931
4	Geonet Drainage Layer Installation	130,680	1 ft ²	\$0.33	\$43,758
5	Geotextile Type 2 Installation	130,680	1 ft ²	\$0.22	\$29,172
6	Cover Soil Installation (36")	14,520	1 yd ³	\$5.02	\$72,931
7	Geotextile Vent Layer Type 1 Installation	39,204	1 ft^2	\$0.33	\$13,128
8	Anchor Trench	1,500	lf	\$10.84	\$16,260
9	Gas Collection System Installation	0	unit(s)	\$41,298	\$0
10	Vegetative Layer Establishment	3.0	acre	\$1,339	\$4,018
	Subtotal				\$325,000

Storm Water Management and Access Roadways

<u>ltem</u>	Description_	Quantity	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>
1	Aggregate Roadway Installation	395	tons	\$20.37	\$8,041
	Subtotal				\$8,000

SUBTOTAL - CONSTRUCTION & STARTUP \$333,000

Engineer	ing				
<u>ltem</u>	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Engineering (12%)	1	LS	\$39,960	\$39,960
2	Construction Quality Assurance (10%)	1	LS	\$33,300	\$33,300
3	Contingency (20%)	1	LS	\$66,600	\$66,600
	Subtotal				\$140,000

TOTAL CAPITAL COSTS \$473,000

Long Ter	m Leachate Disposal (30 years)				
<u>ltem</u>	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Leachate Disposal	1,254	gallons	\$0.13	\$168
	Annual Operation and Maintenance Cos	t			\$200
		TOTAL OPERATIO	N AND MA	INTENANCE	\$6,000
		NPV OPERATIO	N AND MA	INTENANCE	\$4,077

ALTERNATIVE 2, TOTAL COST \$479,000 ALTERNATIVE 2, NPV \$478,000

PC. 026174M1 **3KI FIN**

Cap and Storm Water Cost Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 1: SWMU 5 - Regrading Drainage Ditches

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Clear vegetation around entire perimeter, including areas identified by Mannik & Smith Group where ponding occurs, an estimated 1650 feet.

-Install a liner in these areas to prevent infiltration

Regrading Drainage Ditches

Item	Description_	Quantity	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal	611	1 yd ³	\$5.02	\$3,069
2	Regrading	611	1 yd ³	\$5.00	\$3,056
3	40 mil HDPE Liner Installation	24,750	1 ft^2	\$0.56	\$13,813
	Total				\$20,000

SUBTOTAL - CONSTRUCTION & STARTUP

\$20,000

Engineeri	ing				
Item	Description_	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	Total
1	Engineering (12%)	1	LS	\$2,400	\$2,400
2	Construction Quality Assurance (10%)	1	LS	\$2,000	\$2,000
3	Contingency (20%)	1	LS	\$4,000	\$4,000
	Subtotal				\$8,000

TOTAL CAPITAL COSTS

\$28,000

Long Ter	m Leachate Disposal (30 years)				
<u>ltem</u> 1	Description Leachate Disposal	<u>Quantity</u> 64,996	<u>Unit</u> gallons	<u>Unit Cost</u> \$0.10	<u>Total</u> \$6,357
	Annual Operation and Maintenance Cost				\$6,000
		TOTAL OPER	ATION AND	MAINTENANCE	\$180,000
NPV OPERATION AND MAINTENANCE				\$122,297	

ALTERNATIVE 1, TOTAL COST	\$208,000
ALTERNATIVE 1, NPV	\$151,000

Alternative 2: SWMU 5 - Installation of a Composite Cover

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions
-Regrade areas identified by Mannik & Smith Group where ponding occurs, an estimated 3,500 square feet, and
install a liner in these areas to prevent infiltration.
-Installation of a composite cover over the entire area of SWMU 5 (8 acres).
-Approximately 3-ft of current cover soils would be removed before installing the composite cover.

-Geotextile vent layer covers 30% of the total area.

Regrading Drainage Ditches

<u>Item</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal	611	1 yd ³	\$5.02	\$3,069
2	Regrading	611	1 yd ³	\$5.00	\$3,056
3	40 mil HDPE Liner Installation	24,750	1 ft ²	\$0.56	\$13,813
	Total				\$17,000

Cap and Vegetative Cover

Г

Item	Description	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>
1	Protective Cover Removal	38,720	1 yd ³	\$5.02	\$194,482
2	Recompacted Clay Liner Installation (Phs III)	0	1 yd ³	\$7.26	\$0
3	40 mil HDPE Liner Installation	348,480	1 ft ²	\$0.56	\$194,482
4	Geonet Drainage Layer Installation	348,480	1 ft ²	\$0.33	\$116,689
5	Geotextile Type 2 Installation	348,480	1 ft ²	\$0.22	\$77,793
6	Cover Soil Installation (36")	38,720	1 yd ³	\$5.02	\$194,482
7	Geotextile Vent Layer Type 1 Installation	104,544	1 ft ²	\$0.33	\$35,007
8	Anchor Trench	2,200	lf	\$10.84	\$23,848
9	Gas Collection System Installation	0	unit(s)	\$41,298	\$0
10	Vegetative Layer Establishment	8.0	acre	\$1,339	\$10,715
	Subtotal				\$847.000

Storm Wa	ater Management and Access Roadways				
<u>Item</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Aggregate Roadway Installation	1,053	tons	\$20.37	\$21,442
	Subtotal				\$21,000

		SUBTOTAL - CO	ON & STARTUP	\$885,000	
Engineer	ing				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Engineering (15%)	1	LS	\$132,750	\$132,750
2	Construction Quality Assurance (10%)	1	LS	\$88,500	\$88,500
3	Contingency (20%)	1	LS	\$177,000	\$177,000
	Subtotal				\$398,000

TOTAL CAPITAL COSTS \$1,283,000

Long Ter	m Leachate Disposal (30 years)					
<u>ltem</u> 1	Description Leachate Disposal	<u>Quantity</u> 3,250	<u>Unit</u> gallons	<u>Unit Cost</u> \$0.10	<u>Total</u> \$318	
	Annual Operation and Maintenance Cost				\$300	
TOTAL OPERATION AND MAINTENANCE				\$9,000		
NPV OPERATION AND MAINTENANCE						

ALTERNATIVE 2, TOTAL COST \$1,292,000 ALTERNATIVE 2, NPV \$1,290,000

3KLEIN 1/7/11 [026174M13_B01]

Alternative 1: SWMU 6 - Regrading Drainage Ditches

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions -Clear vegetation around perimeter, including areas identified by Mannik & Smith Group where ponding occurs, an estimated 19,500 square feet.

-Install a liner in perimeter ditches (1,950 ft) to prevent infiltration.

-Create intermediate drainage swales to channel water on the north and south sides of the unit, an estimated 9,000 square feet, and line swale.

-Install 2 retention basins: one in area of current ponding between SWMU 6 and SWMU 7, an estimated 6,000 square feet, and one in northeast corner, an estimated 4,500 square feet.

-Excavate waste outside of property line - an estimated 200 cubic yards - and dispose in Cell M.

-Off-site cover soil volume is estimated to be 110 cubic yards. Soil is assumed to be reusable. Outside of property line, soil cover ranges from 0 to 5 feet thick.

-A total off-site area of 980 square feet to be excavated (3 sections: 70' x 5', 40' x 7' and 35' x 10').

-Waste is assumed to weigh 1.5 tons/cubic yard.

Regrading Drainage Ditches and Intermediate Swales

<u>Item</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal (Clearing)	1,056	1 yd ³	\$5.02	\$5,302
2	Regrading Existing Eitches	1,056	1 yd ³	\$5.00	\$5,278
3	Create Intermediate Swales	333	1 yd ³	\$5.00	\$1,667
4	40 mil HDPE Liner Installation	42,750	1 ft ²	\$0.56	\$23,858
	Subtotal				\$36,000

Retention Ponds for Storm Water Runoff in SW and NE corners

<u>ltem</u>	Description_	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal	2,333	1 yd ³	\$5.00	\$11,667
2	Hauling Excavated Materials	2,333	1 yd ³	\$5.00	\$11,667
3	40 mil HDPE Liner Installation	10,500	1 ft^2	\$0.56	\$5,860
4	Geonet Drainage Layer Installation	10,500	1 ft ²	\$0.33	\$3,516
5	Geotextile Type 2 Installation	10,500	1 ft ²	\$0.22	\$2,344
6	Culvert Installation	500	linear ft	\$12.23	\$6,115
	Subtotal				\$41,000

Cap and Waste Excavation for Off-site Waste						
Item	Description_	Quantity	<u>Unit</u>	Unit Cost	Total	
1	Excavating and Hauling Waste and Cap	310	1 yd ³	\$3.05	\$946	
2	Disposal in Cell M (Waste only)	300	ton	\$56.90	\$17,070	
3	Backfilling and Regrading	310	1 yd ³	\$5.00	\$1,550	
4	Vegetative Layer Establishment	0.02	acre	\$1,339	\$31	
	Subtotal				\$20,000	

SUBTOTAL - CONSTRUCTION & STARTUP \$97,000

Engineer	ing				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Engineering (12%)	1	LS	\$11,640	\$11,640
2	Construction Quality Assurance (10%)	1	LS	\$9,700	\$9,700
3	Contingency (20%)	1	LS	\$19,400	\$19,400
	Subtotal				\$41,000
			TOTAL C	APITAL COSTS	\$138,000

Long Ter	m Leachate Disposal (30 years)				
<u>ltem</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Leachate Disposal	105,597	gallons	\$0.10	\$10,327
	Annual Operation and Maintenance Cost				\$10,300
TOTAL OPERATION AND MAINTENANCE					\$309,000
NPV OPERATION AND MAINTENANCE					

ALTERNATIVE 1, TOTAL COST \$447,000 ALTERNATIVE 1, NPV \$348,000

Cap and Storm Water Cost Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 2: SWMU 6 - Installation of a Composite Cover Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions
Installation of a composite cover over the entire area of SWMU 6 (6.5 acres).
Approximately 1 yard of current cover soils would be removed before installing the composite cover.
Line Item 7, the Geotextile vent layer covers 30% of the total area.
Clear vegetation around perimeter, including areas identified by Mannik & Smith Group where ponding occurs, an estimated 19,500 square feet.
Install a liner in perimeter ditches (1,950 ft) to prevent infiltration.
Create intermediate drainage swales to channel water on the north and south sides of the unit, an estimated 9,000
square teet, and line swale.
Install 2 retention basins: one in area of current ponding between SWMU 6 and SWMU 7, an estimated 6,000 square eet, and one in northeast corner, an estimated 4,500 square feet.
Excavate waste outside of property line - an estimated 200 cubic yards - and dispose in Cell M.
Cap volume is estimated to be 110 cubic yards. Cap material is assumed to be reusable. Outside of property line, cap ranges from 0 to 5 feet thick.
A total area of 980 square feet to be excavated (3 sections: 70' x 5', 40' x 7' and 35' x 10').
Waste is assumed to weigh 1.5 tons/cubic yard.
Cap and Vegetative Cover

Item	Description	Quantity	Unit	Unit Cost	Total
1	Protective Cover Removal	31,460	1 yd ³	\$5.02	\$158,017
2	Recompacted Clay Liner Installation (Phs III)	0	1 yd ³	\$7.26	\$0
3	40 mil HDPE Liner Installation	283,140	1 ft ²	\$0.56	\$158,017
4	Geonet Drainage Layer Installation	283,140	1 ft ²	\$0.33	\$94,810
5	Geotextile Type 2 Installation	283,140	1 ft ²	\$0.22	\$63,207
6	Cover Soil Installation (36")	31,460	1 yd ³	\$5.02	\$158,017
7	Geotextile Vent Layer Type 1 Installation	84,942	1 ft ²	\$0.33	\$28,443
8	Anchor Trench	2,000	lf	\$10.84	\$21,680
9	Gas Collection System Installation	0	unit(s)	\$41,298	\$0
10	Vegetative Layer Establishment	6.5	acre	\$1,339	\$8,706
	Subtotal				\$691,000

Regrading Drainage Ditches and Intermediate Swales

Item	Description	Quantity	Unit	Unit Cost	Total
1	Protective Cover Removal (Clearing)	1,056	1 yd ³	\$5.02	\$5,302
2	Regrading Existing Ditches	1,056	1 yd ³	\$5.00	\$5,278
3	Create Intermediate Swales	333	1 yd ³	\$5.00	\$1,667
4	40 mil HDPE Liner Installation	42,750	1 ft^2	\$0.56	\$23,858
	Subtotal				\$36,000

Retention Ponds for Storm Water Runoff in SW and NE corners

Item	Description	Quantity	Unit	Unit Cost	Total
1	Protective Cover Removal	2,333	1 yd ³	\$5.00	\$11,667
2	Hauling Excavated Materials	2,333	1 yd ³	\$5.00	\$11,667
3	40 mil HDPE Liner Installation	10,500	1 ft ²	\$0.56	\$5,860
4	Geonet Drainage Layer Installation	10,500	1 ft ²	\$0.33	\$3,516
5	Geotextile Type 2 Installation	10,500	1 ft ²	\$0.22	\$2,344
6	Culvert Installation	500	linear ft	\$12.23	\$6,115
	Subtotal				\$41.000

Storm Water Management and Access Roadways

ltem	Description	Quantity	Unit	Unit Cost	<u>Total</u>
1		855	tons	\$20.37	\$17 422
	Subtotal	000	10/15	φ20.01	\$17.000

Cap and Waste Excavation for Off-site Waste

Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Excavating and Hauling Waste and Cap	310	1 yd ³	\$3.05	\$946
2	Disposal in Cell M (Waste only)	300	ton	\$56.90	\$17,070
3	Backfilling and Regrading	310	1 yd ³	\$5.00	\$1,550
4	Vegetative Layer Establishment	0.02	acre	\$1,339.41	\$31
	Subtotal				\$20,000

		SUBTOTAL - CO	NSTRUCTI	ON & STARTUP	\$805,000
ngineer	ing				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Engineering (15%)	1	LS	\$120,750	\$120,750
2	Construction Quality Assurance (10%)	1	LS	\$80,500	\$80,500
3	Contingency (20%)	1	LS	\$161,000	\$161,000
	Subtotal				\$362,000

TOTAL CAPITAL COSTS \$1,167,000

Long Ter	m Leachate Disposal (30 years)				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Leachate Disposal	5,280	gallons	\$0.10	\$516
	Annual Operation and Maintenance Cost				\$500
		TOTAL OPER	ATION AND	MAINTENANCE	\$15,000
		NPV OPER/	ATION AND	MAINTENANCE	\$10,191

ALTERNATIVE 2, TOTAL COST \$1,182,000 ALTERNATIVE 2, NPV \$1,178,000

Cap and Storm Water Cost Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 1: SWMU 7 - Regrade Drainage Ditches

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Regrade areas identified by Mannik & Smith Group where ponding occurs, an estimated 7,500 square feet, plus an additional 16,000 square feet for the remaining perimeter.

-Install a liner in swales to prevent infiltration.

-Create intermediate drainage swales to channel water on the north side of the unit, an estimated 6,000 square feet.

graum	g Brainage Brones and mermediate owa				
Item	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Protective Cover Removal (Clearing)	1,093	1 yd ³	\$5.02	\$5,488
2	Regrade Existing Trenches	870	1 yd ³	\$5.00	\$4,352
3	Create Intermediate Swales	222	1 yd ³	\$5.00	\$1,11 ⁻
4	40 mil HDPE Liner Installation	44,250	1 ft^2	\$0.56	\$24,69
	Subtotal				\$36,000
	Subtotal	SUBTOTAL - CO	NSTRUCTI	ON & STARTUP	\$36,000
gineer	ing	SUBTOTAL - CO	NSTRUCTI	ON & STARTUP	\$36,000
gineer Item	ing Description	SUBTOTAL - CO	NSTRUCTI Unit	ON & STARTUP	\$36,000 \$36,000
gineer Item 1	ing Description Engineering (12%)	SUBTOTAL - CO Quantity 1	NSTRUCTION Unit LS	ON & STARTUP Unit Cost \$4,320	\$36,000 \$36,000 <u>\$36,000</u> <u>Total</u> \$4,320
gineer Item 1 2	ing <u>Description</u> Engineering (12%) Construction Quality Assurance (10%)	SUBTOTAL - CO Quantity 1 1	NSTRUCTI Unit LS LS	ON & STARTUP Unit Cost \$4,320 \$3,600	\$36,000 \$36,000 <u>Total</u> \$4,320 \$3,600
gineer Item 1 2 3	ing <u>Description</u> Engineering (12%) Construction Quality Assurance (10%) Contingency (20%)	SUBTOTAL - CO Quantity 1 1 1	<u>Unit</u> LS LS LS	ON & STARTUP Unit Cost \$4,320 \$3,600 \$7,200	\$36,000 \$36,000 <u>Total</u> \$4,320 \$3,600 \$7,200
gineer 1 2 3	ing <u>Description</u> Engineering (12%) Construction Quality Assurance (10%) Contingency (20%) Subtotal	SUBTOTAL - CO Quantity 1 1 1	NSTRUCTI Unit LS LS LS	ON & STARTUP Unit Cost \$4,320 \$3,600 \$7,200	\$36,000 \$36,000 <u>Total</u> \$4,320 \$3,600 \$7,200 \$15,000
gineer ltem 1 2 3	ing <u>Description</u> Engineering (12%) Construction Quality Assurance (10%) Contingency (20%) Subtotal	SUBTOTAL - CO Quantity 1 1 1	NSTRUCTION Unit LS LS LS	ON & STARTUP <u>Unit Cost</u> \$4,320 \$3,600 \$7,200	\$36,000 \$36,000 <u>Total</u> \$4,320 \$3,600 \$7,200 \$15,000

		NPV OPER	ATION AND	MAINTENANCE	\$876,463
		TOTAL OPER	ATION AND	MAINTENANCE	\$1,290,000
	Annual Operation and Maintenance Cost				\$43,000
1	Leachate Disposal	439,884	gallons	\$0.10	\$43,021
<u>ltem</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
Long Ten	in Leachale Disposal (50 years)				

ALTERNATIVE 1, TOTAL COST	\$1,341,000
ALTERNATIVE 1, NPV	\$928,000

Alternative 2: SWMU 7 - Installation of a Composite Cover

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Installation of a composite cover over the entire area of SWMU 7 (7 acres).

-Approximately 1 yard of current cover soils would be removed before installing the composite cover.

-Geotextile vent layer covers 30% of the total area. -Regrade areas identified by Mannik & Smith Group where ponding occurs, an estimated 7,500 square feet, plus an additional 13,500 square feet for the remaining perimeter.

-Install a liner around perimeter to prevent infiltration.

-Create intermediate drainage swales to channel water on the north side of the unit, an estimated 6,000 square feet.

Cap and Vegetative Cover

Item	Description	Quantity	Unit	Unit Cost	Total
1	Protective Cover Removal	33,880	1 yd ³	\$5.02	\$170,172
2	Recompacted Clay Liner Installation (Phs III)	0	1 yd ³	\$7.26	\$0
3	40 mil HDPE Liner Installation	304,920	1 ft ²	\$0.56	\$170,172
4	Geonet Drainage Layer Installation	304,920	1 ft ²	\$0.33	\$102,103
5	Geotextile Type 2 Installation	304,920	1 ft ²	\$0.22	\$68,069
6	Cover Soil Installation (36")	33,880	1 yd ³	\$5.02	\$170,172
7	Geotextile Vent Layer Type 1 Installation	91,476	1 ft ²	\$0.33	\$30,631
8	Anchor Trench	2,100	lf	\$10.84	\$22,764
9	Gas Collection System Installation	0	unit(s)	\$41,298	\$0
10	Vegetative Layer Establishment	7.0	acre	\$1,339	\$9,376
	Subtotal				\$743,000

Regrading Drainage Ditches and Intermediate Swale

Item	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal (Clearing)	1,093	1 yd ³	\$5.02	\$5,488
2	Regrade Existing Trenches	870	1 yd ³	\$5.00	\$4,352
3	Create Intermediate Swales	222	1 yd ³	\$5.00	\$1,111
4	40 mil HDPE Liner Installation	44,250	1 ft^2	\$0.56	\$24,695
	Subtotal				\$36,000

Storm Wa	ater Management and Access Roadways				
<u>Item</u>	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Aggregate Roadway Installation	921	tons	\$20.37	\$18,762
	Subtotal				\$19,000

SUBTOTAL - CONSTRUCTION & STARTUP \$798,000

Engineer	ing				
Item	Description	Quantity	Unit	Unit Cost	<u>Total</u>
1	Engineering (15%)	1	LS	\$114,300	\$114,300
2	Construction Quality Assurance (10%)	1	LS	\$76,200	\$76,200
3	Contingency (20%)	1	LS	\$15,960	\$15,960
	Subtotal				\$206,000

TOTAL CAPITAL COSTS \$1,004,000

Long Ter	m Leachate Disposal (30 years)				
Item	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Leachate Disposal	21,994	gallons	\$0.10	\$2,151
	Annual Operation and Maintenance Cost				\$2,200
		TOTAL OPERA	TION AND I	MAINTENANCE	\$66,000
		NPV OPERA	TION AND I	MAINTENANCE	\$44,842

ALTERNATIVE 2, TOTAL COST \$1,070,000 ALTERNATIVE 2, NPV \$1,049,000

APPENDIX E

Supporting Documentation for CM Analysis – SWMU8

CONTENTS

Typical Cross-Sections Cost Estimates – SWMU 8 Alternatives **Typical Cross-Sections**

Figure
4.2
6174M8X05

Cost Estimates – SWMU 8 Alternatives

BKLEIN 1/7/11 [026174M13_C05]

Environsafe Services of Ohio, Inc. SWMU 8

Alternative 1: SWMU 8 - In Place Management

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions
In Place management requires:
-Demolition of Building C - foot print of building estimated to be 260' x 80' and 12' high
-Excavation of AOC 7 - drain pipe and sump - an estimated 1,000 cubic yards (10' x 10' x 10')
-Repair cap in observed area of NAPL seepage - an estimated 26,500 square feet (almost 9,000 cubic yards) of cap, cap can be
reused.
-Leachate collection wells - leachate is estimated to be an average of 5 feet thick at the base of the unit (estimated 6 acres) and
20% drainable porosity, yielding an estimated volume of 3.4 million gallons of leachate
-Installation of passive landfill gas vents
-Installation of a sheet pile barrier wall on the north and south perimeter - an estimated 2,700 linear feet

Building C					
<u>Item</u>	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Demolition of Structure	249,600	ft ³	\$0.28	\$69,649
2	Demolition of Slab	20,800	ft ²	\$6.03	\$125,369
3	Excavation of AOC 7	1,000	1 yd ³	\$3.05	\$3,050
4	Backfill of AOC 7	1,000	1 yd ³	\$5.00	\$5,000
5	Disposal of Structure	0	1 yd ³	\$10.44	\$0
6	Disposal of Slab	385	1 yd ³	\$12.33	\$4,751
7	Building Construction w/slab on grade	8,000	ft ²	\$122.00	\$976,000
	Subtotal				\$1,184,000

Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total		
1	Excavation of Cap in NAPL Seepage	8,833	1 yd ³	\$3.05	\$26,942		
2	Backfilling and Repair Seep Areas	8,833	1 yd ³	\$5.00	\$44,167		
3	Vegetative Layer Establishment	6.7	acre	\$1,339	\$8,974		
	Subtotal				\$80,000		

Installation of Leachate Recovery Wells

: HDPE Well Labor and Materials s site and waste management Time (Rig and 3 man crew) e eachate Recovery & Disposal (start-up)	400 10 14 4 1,955,360	ft hr hr week gallons	\$69.00 \$350.00 \$300.00 \$1,200.00 \$0.20	\$27,600 \$3,500 \$4,200 \$4,800 \$391,072
HDPE Well Labor and Materials e site and waste management Time (Rig and 3 man crew) pe	400 10 14 4	ft hr hr week	\$69.00 \$350.00 \$300.00 \$1,200.00	\$27,600 \$3,500 \$4,200 \$4,800
HDPE Well Labor and Materials e site and waste management Time (Rig and 3 man crew)	400 10 14	ft hr hr	\$69.00 \$350.00 \$300.00	\$27,600 \$3,500 \$4,200
HDPE Well Labor and Materials e site and waste management	400 10	ft hr	\$69.00 \$350.00	\$27,600 \$3,500
HDPE Well Labor and Materials	400	ft	\$69.00	\$27,600
nic Drilling	400	feet	\$55.00	\$22,000
tence	54	man/day	\$100.00	\$5,400
ation and Demobilization	1	LS	\$1,500.00	\$1,500
		OTIN	Unit Cost	Iotal
	ation and Demokilization	ation and Demohilipation	eties and Demokilization	ation and Demokilization

Passive Landfill Gas Vent Installation Around Perimeter

Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Moblization (included above)	1	LS	-	-
2	Labor and Equipment	5	Day	\$1,350	\$6,750
3	Installation of twelve, 4", 15 foot deep gas vents	180	ft	\$193	\$34,740
	Subtotal				\$41,000

Containment Wall - SWMU 8 North and South Boundaries							
Item	Description	Quantity	Unit	Unit Cost	Total		
1	Sheet Pile Wall (35')	94,500	1 ft ²	\$29	\$2,742,437		
	Subtotal				\$2,742,000		

Note: ESOI obtained quotes in 2005 for installing a shallow or deep slurry wall for groundwater containment. Prices are adjusted for inflation.

		SUBTOTAL - CONSTRUCTION & STARTUP			\$4,507,000
ngineerin	ng, Oversight, and Contingency				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Engineering and Permitting (12%)	1	LS	\$540,840	\$540,840
2	Construction Quality Assurance (10%)	1	LS	\$450,700	\$450,700
3	Contingency (20%)	1	LS	\$901,400	\$901,400
	Subtotal				\$1,893,000

TOTAL CAPITAL COSTS \$ 6,400,000

Long Term	Monitoring				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Leachate Removal System Maintenance (30 years)	10	pump	\$246	\$2,456
2	Leachate Disposal (30 years)	232,000	gallons	\$0.10	\$22,690
3	Gas Probe Maintenance (30 years)	2	event	\$123	\$246
4	Weekly Monitoring of Gas Probes (5 years)	130	hour	\$59.00	\$7,670
5	Semi-Annual Monitoring of Gas Probes (25 years)	10	hour	\$59.00	\$590
	Annual Maintenance for the first 5 years				\$33,100
	Annual Maintenance for 25 years (after the first 5)				\$26,000
		TOTAL OPERAT	ION AND M	AINTENANCE \$	815,500
		NPV OPERA	TION AND M	AINTENANCE	\$563,591

ALTERNATIVE 1, TOTAL COST \$ 7,216,000 ALTERNATIVE 1, NPV \$ 6,964,000

Notes: Gas Probe monitoring for newly installed points. The existing 4 points to the southwest of the unit are addressed in the landfill gas cost estimate sheet. -ESOI estimated 1 hour a week for weekly monitoring of 5 points. 12 points need weekly monitoring (for 5 years) = 2.5 hours/week. ESOI estimated 16 hours for one semi annual monitoring of 41 points. 12 points need semi annual monitoring (for 10 years) = 5 hours/event = 10 hrs/yr -Line items show the annual cost. -Long term monitoring does not include vegetation maintenance (see facility wide cap cost estimates)

Environsafe Services of Ohio, Inc. SWMU 8

Alternative 2: SWMU 8 - In Place CAMU

Cumulative Cost Deflator, 2005 to 2010 -> 1.11617

Scope and Assumptions
In Place CAMU requires:
-Demolition of Building C - foot print of building estimated to be 260' x 80' and 12' high
-Excavation of AOC 7 - drain pipe and sump - an estimated 500 cubic yards (10' x 10' x 5')
-Installation of liner system below waste which includes a leachate collection system- a portion of the waste will be excavated and
stored on the remaining unit while the liner is installed. The temporary storage pad is estimated to be 360' x 200'. Leachate will
be collected from this stored waste and disposed. Leachate is estimated to be an average of 5' thick at the base of the unit
(estimated 6 acres) and 20% porosity, yielding an estimated volume of 3.4 million gallons of leachate.
-Estimated waste volume of 100,000 cubic yards,cap volume of 65,000 cubic yards

Building C					
<u>Item</u>	Description	Quantity	Unit	Unit Cost	Total
1	Demolition of Structure	249,600	ft ³	\$0.28	\$69,649
2	Demolition of Slab	20,800	ft ²	\$6.03	\$125,369
3	Excavation of AOC 7	1,000	1 yd ³	\$3.05	\$3,050
4	Backfill of AOC 7	1,000	1 yd ³	\$5.00	\$5,000
5	Disposal of Structure	0	CY	\$10.44	\$0
6	Disposal of Slab	385	CY	\$12.33	\$4,751
7	Building Construction	8,000	ft ²	\$122.00	\$976,000
	Subtotal				\$1,184,000

Liner System

h

Item	Description	Quantity	Unit	Unit Cost	Total
1	Excavation of Waste and Cap	165,000	1 yd ³	\$3.05	\$503,250
2	12" gravel base for temporary storage pad	8,000	1 yd ²	\$17.19	\$137,513
3	40 mil HDPE liner for temporary storage pad	72,000	1 ft ²	\$0.56	\$40,182
4	6" gravel layer for temporary storage pad	8,000	1 yd ²	\$8.99	\$71,882
5	60 mil HDPE liner	291,852	1 ft ²	\$0.53	\$154,682
6	Geonet	291,852	1 ft ²	\$0.23	\$67,126
7	16 oz Geotextile	145,926	1 ft ²	\$0.22	\$32,104
8	Stone Aggregate	1,883	1 yd ³	\$29.50	\$55,535
9	Primary Clay	5,648	1 yd ³	\$8.00	\$45,181
10	80 mil HDPE	291,852	1 ft ²	\$0.63	\$183,867
11	Geonet	291,852	1 ft ²	\$0.23	\$67,126
12	16 oz Geotextile	323,956	1 ft ²	\$0.22	\$71,270
13	Stone Aggregate	1,883	1 yd ³	\$29.50	\$55,535
14	6 oz Geotextile	145,926	1 ft ²	\$0.14	\$20,430
15	Protective Cover	1,036	1 yd ³	\$19.80	\$20,514
16	HDPE Testing	145,926	1 ft ²	\$0.04	\$5,837
17	Stabilize Waste for Backfilling	100,000	yd ³	\$10.00	\$1,000,000
18	Backfill Waste	100,000	1 yd ³	\$5.00	\$500,000
	Subtotal				\$3.032.000

Note: Liner installation cost based on ESOI estimates for Cell M

Constructi	onstruction of a Composite Cover							
Item	Description_	Quantity	Unit	Unit Cost	Total			
1	40 mil HDPE Liner Installation	291,852	1 ft ²	\$0.56	\$162,879			
2	Geonet Drainage Layer Installation	291,852	1 ft ²	\$0.33	\$97,727			
3	Geotextile Type 2 Installation	291,852	1 ft ²	\$0.22	\$65,151			
4	Cover Soil Installation (36")	22,547	1 yd ³	\$5.02	\$113,248			
5	Vent pipe installation	4,800	feet	\$15.00	\$72,000			
6	Geotextile Vent Layer Type 1 Installation	291,852	1 ft ²	\$0.33	\$97,727			
7	Anchor Trench	2,700	lf	\$10.84	\$29,268			
8	Vegetative Layer Establishment	6.7	acre	\$1,339	\$8,974			
	Subtotal				\$647.000			

Leachate a	nd LNAPL Recovery During Construction				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Initial Leachate Recovery & Disposal (start-up)	1,955,360	gallons	\$0.20	\$ 391,072
	Subtotal				\$391,000

SUBTOTAL - CONSTRUCTION & STARTUP \$5,254,000

Engineering	3				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Engineering and Permitting (15%)	1	LS	\$788,100	\$788,100
2	Construction Quality Assurance (10%)	1	LS	\$525,400	\$525,400
3	Contingency (20%)	1	LS	\$1,050,800	\$1,050,800
	Subtotal				\$2,364,000

TOTAL CAPITAL COSTS \$ 7,618,000

Long Term	Monitoring				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Leachate Removal System Maintenance (30 years)	10	pump	\$246	\$2,456
2	Leachate Disposal (30 years)	232,000	gallons	\$0.10	\$22,690
3	Gas Probe Maintenance (30 years)	2	event	\$123	\$246
4	Weekly Monitoring of Gas Vents (5 years)	130	hour	\$59.00	\$7,670
5	Semi-Annual Monitoring of Gas Vents (25 years)	10	hour	\$59.00	\$590
	Annual Maintenance for the first 5 years				\$33,000
	Annual Maintenance for 25 years (after the first 5)				\$26,000
		TOTAL OPERA	TION AND M	AINTENANCE	\$815,000
		NPV OPERA	TION AND M	AINTENANCE	\$563,59

ALTERNATIVE 2, TOTAL COST \$8,433,000 ALTERNATIVE 2, NPV \$8,182,000

Notes: Gas vent monitoring for newly installed vents. The existing 4 points to the southwest of the unit are addressed in the landfill gas cost estimate sheet. -ESOI estimated 1 hour a week for weekly monitoring of 5 points. 12 points need weekly monitoring (for 5 years) = 2.5 hours/week. ESOI estimated 16 hours for one semi annual monitoring of 41 points. 12 points need semi annual monitoring (for 10 years) = 5 hours/event = 10 hrs/yr -Line items show the annual cost.

Environsafe Services of Ohio, Inc. SWMU 8

Alternative 3: SWMU 8 - Active Cell M CAMU

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

Active Cell M CAMU requires:

-Demolition of Building C - foot print of building estimated to be 260' x 80' and 12' high

-Excavation of AOC 7 - drain pipe and sump - an estimated 500 cubic yards (10' x 10' x 5')

-Excavation and disposal of waste into Cell M

-Estimated waste volume of 100,000 cubic yards, cap volume of 65,000 cubic yards

-Waste is assumed to weigh 1.5 tops/cubic yard. Disposal costs provided by ESOI. Stabilization cost provided by ESOI for stability only.

-Cap is assumed to be reusable as backfill.

Building C

-						
Item	Description	<u>Quantity</u>	<u>Unit</u>	Uni	t Cost	Total
1	Demolition of Structure	249,600	ft ³	\$0	0.28	\$69,649
2	Demolition of Slab	20,800	ft ²	\$6	5.03	\$125,369
3	Excavation of AOC 7	1,000	1 yd ³	\$3	3.05	\$3,050
4	Backfill of AOC 7	1,000	1 yd ³	\$	5.00	\$5,000
5	Disposal of Structure	0	CY	\$1	0.44	\$0
6	Disposal of Slab	385	CY	\$1	2.33	\$4,751
7	Building Construction	8,000	ft ²	\$	122	\$976,000
	Subtotal					\$1,184,000

Leachate and LNAPL Recovery During	Construction

Item	Description_	Quantity	<u>Unit</u>	Unit Cost	Total
1	Initial Leachate Recovery & Disposal (start-up)	1,955,360	gallons	\$0.20	\$391,072
	Subtotal				\$391.000

CAMU					
Item	Description_	Quantity	<u>Unit</u>	Unit Cost	Total
1	Excavation and Stockpiling of Cap	65,000	1 yd ³	\$3.05	\$198,250
2	Excavation and Hauling of Waste	100,000	1 yd ³	\$3.05	\$305,000
2	Disposal of Waste	150,000	ton	\$57	\$8,475,000
3	Stabilization of Waste for strength improvement	100,000	ton	\$10	\$1,000,000
4	Backfill of unit	165,000	1 yd ³	\$5.00	\$825,000
5	Vegetative Layer Establishment	6.7	acre	\$1,339	\$8,974
	Subtotal				\$10,812,000

SUBTOTAL - CONSTRUCTION & STARTUP \$ 12,387,000

Engineerin	g				
	-				
Item	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Engineering and Permitting (15%)	1	LS	\$1,858,050	\$1,858,050
2	Construction Quality Assurance (10%)	1	LS	\$1,238,700	\$1,238,700
3	Contingency (20%)	1	LS	\$2,477,400	\$2,477,400
	Subtotal				\$5,574,000
			TOTAL CAPITAL COSTS \$		

ALTERNATIVE 3, TOTAL COST \$ 17,961,000

-Long term monitoring for vegetation maintenance is not included (see facility wide cap cost estimates)

APPENDIX F

Supporting Documentation for CM Analysis – SWMU 9

CONTENTS

Cost Estimates - SWMU 9 Alternatives

Environsafe Services of Ohio, Inc. Cap and Storm Water Cost Estimates

Alternative 1: SWMU 9 - Repair Cap and Regrade Drainage Ditches

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

\$1,581

\$1,574

\$7,116

\$10,000

\$217,000

Scope and Assumptions

-Regrade areas in drainage ditches identified by Mannik & Smith Group where ponding occurs, an estimated 850 LF, and install a liner.

-Repair cap in area of NAPL seepage - an estimated area of 40,000 square feet (160' x 250') -Install leachate recovery wells to dewater unit during construction. Leachate has been measured to be approximately 2' thick over the 1.6 acres of the unit, and 20% drainable porosity/drainable leachate is assumed. -Labor costs to remove leachate are assumed to be 8 hours per day over a 3 month period (60 working days)

Regrading Drainage Ditches and Installing Liner Description Unit Cost Total Item Quantity <u>Unit</u> 1 Remove accumulated material in ditches 315 1 yd^3 \$5.02 2 315 1 yd³ \$5.00 Regrading 1 ft^2 40 mil HDPE Liner Installation 3 12,750 \$0.56 Subtotal Repairing Cap in Areas of Seepage

	Subtotal				\$135,000
3	Vegetative Layer Establishment	0.9	acre	\$1,339	\$1,230
2	Backfilling and Regrading	17,778	1 yd ³	\$5.00	\$88,889
1	Protective Cover Removal for Repair	8,889	1 yd ³	\$5.02	\$44,647
<u>ltem</u>	Description	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	<u>Total</u>

Installation of Additional Dewatering Wells

Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Mobilization and Demobilization	1	LS	\$1,500.00	\$1,500
2	Subsistence	14	man/day	\$100.00	\$1,350
3	10" Sonic Drilling	125	feet	\$55.00	\$6,875
4	4" SS x HDPE Well Labor and Materials	125	ft	\$69.00	\$8,625
5	Restore site and waste management	5	hr	\$350.00	\$1,750
6	Decon Time (Rig and 3 man crew)	7	hr	\$300.00	\$2,100
7	Backhoe	1	week	\$1,200.00	\$1,200
8	Leachate Disposal	208,530	gallons	\$0.10	\$20,394
9	Leachate Disposal Labor	480	hours	\$59.00	\$28,320
	Subtotal				\$72,000

SUBTOTAL - CONSTRUCTION & STARTUP

Engineer	ing				
Item	Description	Quantity	Unit	Unit Cost	Total
1	Engineering and Permitting (12%)	1	LS	\$26,040	\$26,040
2	Construction Quality Assurance (10%)	1	LS	\$21,700	\$21,700
3	Contingency (20%)	1	LS	\$43,400	\$43,400
	Subtotal				\$91,000
	TOTAL CAPITAL COSTS \$				

ALTERNATIVE 1, TOTAL COST \$308,000

Alternative 2: SWMU 9 - Excavate Area of Seepage, Install Composite Cover, Regrade Ditches

Cumulative Cost Deflator, 2005 to 2010 -> 1.11617

Scope and Assumptions -Top 6 feet of unit to be excavated - an estmated 40,000 square feet. 1 foot of cap to be disposed of in Cell M due to oily seepage - cap is estimated to weigh 1.5 tons/cubic yard.

-Composite cover installed over the area plus additional area - an estimated 55,000 square feet

-The estimated 9,000 cubic yards of cap is assumed to be reusable for backfilling

-Regrade areas in drainage ditches identified by Mannik & Smith Group where ponding occurs, an estimated 600 LF, and install a liner

-Install leachate recovery wells to dewater unit. Leachate has been measured to be approximately 2' thick over the 1.6 acres of the unit, and 20% porosity/drainable leachate is assumed.

-Labor costs to remove leachate are assumed to be 8 hours per day over a 3 month period (60 working days)

Excavatio	on of Top of Unit and Installation of Compo	site Cover			
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Protective Cover Removal	8,889	1 yd ³	\$5.02	\$44,647
2	Backfilling and regrading	17,778	1 yd ³	\$5.00	\$88,889
3	Disposal of 1-ft of cover soils in Cell M	2,222	ton	\$56.50	\$125,556
4	40 mil HDPE Liner Installation	55,000	1 ft^2	\$0.56	\$30,695
5	Geonet Drainage Layer Installation	55,000	1 ft ²	\$0.33	\$18,417
6	Geotextile Type 2 Installation	55,000	1 ft ²	\$0.22	\$12,278
7	Cover Soil Installation (36")	6,111	1 yd ³	\$5.02	\$30,695
8	Anchor Trench	960	lf	\$10.84	\$10,406
9	Vegetative Layer Establishment	1.3	acre	\$1,339	\$1,691
	Subtotal				\$363,000

Regradin	g Drainage Ditches and Installing Liner				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Remove accumulated material from ditches	315	1 yd ³	\$5.02	\$1,581
2	Regrading ditches	315	1 yd ³	\$5.00	\$1,574
3	40 mil HDPE Liner Installation	12,750	1 ft ²	\$0.56	\$7,116
	Subtotal	· · · · ·			\$10,000

Installatio	on of Piezometers		-		
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Mobilization and Demobilization	1	LS	\$1,500.00	\$1,500
2	Subsistence	14	man/day	\$100.00	\$1,350
3	10" Sonic Drilling	125	feet	\$55.00	\$6,875
4	4" SS x HDPE Well Labor and Materials	125	ft	\$69.00	\$8,625
5	Restore site and waste management	5	hr	\$350.00	\$1,750
6	Decon Time (Rig and 3 man crew)	7	hr	\$300.00	\$2,100
7	Backhoe	1	week	\$1,200.00	\$1,200
8	Leachate Disposal	208,530	gallons	\$0.10	\$20,394
9	Leachate Disposal Labor	480	hours	\$59.00	\$28,320
	Subtotal	-			\$72,000

SUBTOTAL - CONSTRUCTION & STARTUP

\$445,000

Engineer	ing				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Engineering and Permitting (15%)	1	LS	\$66,750	\$66,750
2	Construction Quality Assurance (10%)	1	LS	\$44,500	\$44,500
3	Contingency (20%)	1	LS	\$89,000	\$89,000
	Subtotal				\$200,000
			TOTAL C	APITAL COSTS \$	645 000

OTAL CAPITAL COSTS \$ 64

ALTERNATIVE 2, TOTAL COST

\$645,000

APPENDIX G

Supporting Documentation for CM Analysis SWMU 5 - LNAPL

CONTENTS

Characterization Data Tables Cross-Section Cost Estimates - SWMU 5 LNAPL Alternatives **Characterization Data Tables**

				Table 3	la			
	LNAPL Monitoring							
	ESOI Otter Creek Facility							
	Oregon, Ohio							
	Millard Road Landfill SWMU 5							
Date	Well	Depth to NAPL (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Comments			
7/20/2006	T-20S(1)		4.97		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-20S(2)	13.97	14.00	0.03	Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-20S (3)		6.17		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-20S (4)		10.19		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-20S (5)	6.55	7.53	0.98	Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-20S (6)		13.99		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	MR-6S		12.88		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	T-21S		15.44		Wells were checked for DNAPL. No DNAPL was present			
7/20/2006	TLW-1		11.83		Wells were checked for DNAPL. No DNAPL was present			
	-	-	-					
7/25/2006	T-20S (2)	14.24	14.28	0.04				
7/25/2006	T-20S (5)	6.7	7.71	1.01	Sampled on July 25, 2006, effectively removing the NAPL layer			
7/26/2006	T-20S (1)		5.3					
7/26/2006	T-20S (2)	14.22	14.25	0.03				
7/26/2006	T-20S (3)		6.42					
7/26/2006	T-20S (4)		10.4					
7/26/2006	T-20S (5)	6.83	7.12	0.29				
7/26/2006	T-20S (6)		14.12					
7/27/2000	T 200 (5)	674	7.00	0.26				
//2//2006	1-208 (5)	0.74	7.00	0.20				
7/28/2006	T-208 (5)	5 59	5 70	0.20	Heavy rain fall the previous night			
//28/2000	1-205 (5)	5.57	5.17	0.20	neavy rain ten the previous night			
8/1/2006	T-20S (1)	I	5 16					
8/1/2006	T-20S(2)	14.1	14.13	0.03				
8/1/2006	T-20S (3)		6.22					
8/1/2006	T-20S (4)		10.3					
8/1/2006	T-20S (5)	6.34	6.63	0.29				
8/1/2006	T-20S (6)		13.98					
8/1/2006	MR-6S		13.06					
8/1/2006	T-20W		8.54					
8/1/2006	T-21S		15.46					
8/1/2006	T-46W		10.31					
8/1/2006	T-47W		14.19					
8/1/2006	T-45W		11.11					
8/1/2006	TLW-1		12.25					
	I	T						
8/3/2006	T-20S (1)		5.14					
8/3/2006	T-20S (2)	14.08	14.09	0.01				
8/3/2006	T-20S (3)		6.21					
8/3/2006	T-20S (4)		10.31					
8/3/2006	1-205 (5) T 205 (C)	6.53	6./l	0.18	Checked for DNAPL, but it was not present.			
8/3/2006	1-203 (0) MD 69		14.03					
0/3/2000 8/2/2004	T 20W		0 51					
8/3/2006	T_21S		0.31 15 51					
8/3/2000	T-46W		10.24					
8/3/2000	T-40W		10.34					
8/3/2000	T-45W		14.14					
8/3/2000	TLW-1		12 30		Checked for DNAPL, but it was not present			
0/0/2000			12.57		cheened for Dinning, out it mus not probent.			

	Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio							
	Millard Road Landfill SWMU 5							
0 (0 (0 0 0 d			- 40					
8/8/2006	T-20S (1)		5.49					
8/8/2006	T-20S (2)	14.38	14.395	0.015	Checked for DNAPL, but it was not present.			
8/8/2006	T = 20S(3)		0.40					
8/8/2006	$T_{-20S}(4)$	6.83	10.J	0.03	Checked for DNAPL but it was not present			
8/8/2006	T-205 (5)	0.05	14 22	0.05	checked for DIVALE, but it was not present.			
8/8/2006	MR-6S		13.19					
8/8/2006	T-20W		8.83					
8/8/2006	T-21S		15.61					
8/8/2006	T-46W		10.53					
8/8/2006	T-47W		14.49					
8/8/2006	T-45W		11.97					
8/8/2006	TLW-1		12.91					
0/10/200	T 0 00 (1)		1					
8/10/2006	T-20S (1)		5.38					
8/10/2006	1-20S(2) T 20S(2)	14.31	14.32	0.01	Checked for DNAPL, but it was not present.			
8/10/2006	$T_{-20S}(3)$ $T_{-20S}(4)$		10.44					
8/10/2006	$T_{-20S}(4)$	6.87	6.89	0.02	Checked for DNAPL but it was not present			
8/10/2006	T-20S (6)		14 19		checked for Diffit E, but it was not present.			
8/10/2006	MR-6S		13.24					
8/10/2006	T-20W		8.87					
8/10/2006	T-21S		15.6					
8/10/2006	T-46W		10.54					
8/10/2006	T-47W		14.41					
8/10/2006	T-45W		12.02					
8/10/2006	TLW-1		12.81					
10/24/2006	T 200 (1)		5.26					
10/24/2006	1-20S(1)		5.26					
10/24/2006	$T_{205}(2)$ $T_{205}(3)$	14.14	6.13	0.01				
10/24/2006	T-20S(3) T-20S(4)		10.22					
10/24/2006	T-20S (5)	6.15	8.56	2.41	Bailed down NAPL			
10/24/2006	T-20S (6)		14.02					
10/24/2006	MR-6S		13.17					
10/24/2006	T-20W		8.52					
10/24/2006	T-21S		15.08					
10/24/2006	T-46W		10.98					
10/24/2006	T-47W		14.1					
10/24/2006	T-45W		10.37					
10/24/2006	ILW-I		10.87					
10/26/2006	$T_{-20S(1)}$		6 27					
10/26/2006	$T_{-20S}(1)$	15 27	15.28					
10/26/2006	T-20S(2) T-20S(3)	1.5.27	6 33					
10/26/2006	T-20S (4)		10.64					
10/26/2006	T-20S (5)	6.74	6.78	0.04				
10/26/2006	T-20S (6)		14.14					
10/26/2006	MR-6S		13.25					
10/26/2006	T-20W		8.51					
10/26/2006	T-21S		15.33					
10/26/2006	T-46W		10.76					

	Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio					
				Millard Road Land	dfill SWMU 5	
10/26/2006	T-47W		14.32			
10/26/2006	T-45W		10.37			
10/20/2006	T 0 0 C (1)					
10/30/2006	T-20S(1)		5.54			
10/30/2006	T = 20S(2)	14.4	14.41	0.01		
10/30/2006	T - 20S(3) T 20S(4)		10.15			
10/30/2006	T-205 (4)	6.27	6.28	0.01		
10/30/2006	T-20S (6)		13.78			
10/30/2006	T-20S (7)		7.4		DTB from TOC is 17.47'	
10/30/2006	T-20S (8)		13.37		DTB from TOC is 20.33'	
10/30/2006	MR-6S		13.19			
10/30/2006	T-20W		8.23			
10/30/2006	T-21S		14.8			
10/30/2006	T-46W		10.54			
10/30/2006	T-47W		13.19			
10/30/2006	T-45W		10.37			
10/30/2006	TLW-1		10.37		m) (001	
11/1/2006	T-20S(1)		5.67		Time: 1301	
11/1/2006	T-20S (2)	14.56	14.57	0.01	Time: 1312	
11/1/2006	1-20S (3)		0.18		Time: 1259	
11/1/2006	T-205 (4)		6 25		Time: 1209	
11/1/2006	T-205 (5)	0.15	13.94	0.2	Time: 1253	
11/1/2006	T-20S(0) T-20S(7)		7.5		Time: 1306	
11/1/2006	T-20S(8)		11.94		Time: 1303	
	(-)					
8/27/2007	T-20S (1)		5.72		Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (2)	15.39	15.45	0.06	Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (3)		6.33		Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (4)		10.41		Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (5)	6.62	6.86	0.24	Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (6)	14.94	14.95	0.01	Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (7)		7.69		Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	T-20S (8)		10.26		Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	MK-05 T 215	14.72	14.73	0.01	Wells were checked for DNAPL. No DNAPL was present	
8/27/2007	1-215 TI W_1		15.12		Well is missing, presumed destroyed	
8/2//2007	11.00-1				wen is missing, presumed destroyed.	
				SWMU 5 LNAPL F	Bail-down Test	
					Time: 1720 No FP or sheen noted on purged water, will not include in	
8/27/2007	MR-6S	14.72	14.73	0.01	bail-down test.	
8/27/2007	T-20S (2)	15.42	15.45	0.03	Time: 1725	
8/27/2007	T-20S (5)	6.62	6.86	0.24	Time: 1748	
8/27/2007	T-20S (6)	14.96	14.97	0.01	Time: 1740	
8/27/2007	T-20S (2)	15.98	15.99	0.01	Time: 1800	
8/27/2007	T-20S (5)	6.8	6.84	0.04	Time: 1752	
8/27/2007	T-20S (6)	15.3	15.31	0.01	Time: 1807	
	T A C C C		2	-	T. 1000	
8/27/2007	T-20S (2)	15.96	15.97	0.01	Time: 1830	
8/27/2007	T-20S (5)	6.68	6.72	0.04	11me: 1812	
8/27/2007	1-208 (6)	15.32	15.33	0.01	11me: 1821	

Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio Millard Road Landfill SWMU 5					
11/28/2007 T-20S (1)		6.5		Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (2)	14.92	15.30	0.38	Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (3)		7.27		Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (4)		11.10		Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (5)	4.80	6.50	1.70	Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (6)	15.80	16.20	0.40	Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (7)		7.80		Wells were checked for DNAPL. No DNAPL was present	
11/28/2007 T-20S (8)		11.90		Wells were checked for DNAPL. No DNAPL was present	

	Table 3a LNAPL Monitoring ESOI Otter Creek Facility Oregon, Ohio Millard Road Landfill - SWMU 5								
	Depth to Depth to LNAPL								
Date	Well	NAPL (ft)	Water (ft)	Thickness (ft)	Comments				
	T-20S (1)		5.53		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (2)	15.5	15.83	0.33					
	T-20S (3)		5.95		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (4)		10.11		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (5)	6.06	6.79	0.73					
	T-20S (6)	14.93	15.09	0.16					
6/2/2010	T-20S (7)		7.46		Wells were checked for DNAPL. No DNAPL was present				
	T-20S (8)		11.95		Wells were checked for DNAPL. No DNAPL was present				
	MR-6S		14.76						
	T21S		15.36		Wells were checked for DNAPL. No DNAPL was present				
	T20W		8.18		Well is missing, presumed destroyed.				
	T45W		12.15						
	T46W				Unable to locate, presumed abandoned.				

Table 4a Summary of Physical Properties T20S(5) Non-Aqueous Phase Liquid ESOI Otter Creek Facility Oregon, Ohio					
LOCATION ENVIRON Sample ID Matrix Sample Date Comments		T-20S (5) SWMU5-T20S5-NAPL NAPL 02-Jun-10			
Physical Properties	Units				
Specific Gravity/Bulk Density	NONE	0.95			
Viscosity @ 60F	CST	529.5			
Viscosity @ 77F	CST	254.8			
Viscosity @ 104F	CST	98.16			
Viscosity @ 194F	CST	13.54			
Viscosity @ 212F	CST	10.43			
Abbreviations:					

CST: Centistokes

Table 4b Summary of Physical Properties Non-Aqueous Phase Liquid ESOI Otter Creek Facility Oregon, Ohio

LOCATION		AOC 7	COMP_SWMU9	T-20S (5)	T-33S	TLW-202
ENVIRON Sample ID		AOC7-NAPL-060726	SWMU9-NAPL-061101-C	T20S5-NAPL-060726	T33S-NAPL-060714	TLW202-NAPL-060726
Matrix		NAPL	NAPL	NAPL	NAPL	NAPL
Sample Date		26-Jul-06	01-Nov-06	26-Jul-06	14-Jul-06	26-Jul-06
Comments						
Physical Properties	Units					
Specific Gravity/Bulk Density	NONE	0.99	0.93	0.97	0.93	0.98
Viscosity (Initial)	CST	5549.82 @60F	25.43 @60F	518.46 @60F	53.04 @15.6C	107.44 @60F
Viscosity (Secondary)	CST	2086.92 @77F	17.19 @77F	244.72 @77F	33.2 @25C	62.74 @77F
Viscosity (Initial)	SUS	25646.3 @60F	121 @60F	507.8 @60F	245.9 @15.6C	496.7 @60F
Viscosity (Secondary)	SUS	9653.9 @77F	86.1 @77F	1132.1 @77F	155.7 @25C	290.8 @77F

Abbreviations:

CST: Centistokes

SUS: Saybolt Universal Seconds

Cross-Section

Well	Oil in Voids/Staining	Interval (feet bgs)	Peat/Organic Layer/Staining	Peat/Organic layer depth (ft)	Well Screen Depth (ft)	NAPL in Well	Notes	
							*Soil description from 0 - 2	23 feet bgs
							based on drill cuttings and	field
TLW-1	No oil noted		Peat	21 -23	6 - 21	ND	observations.	
T-19W	No oil noted		Peat	15 - 18	10 - 15	ND		
	Staining	18 - 22	Staining/Organics	6 - 9				
T-20W	No oil noted				9 - 14	ND	*Soil description taken from	m T-20S
T-20S	Staining	14 - 16	Peat	16 - 18	17 - 22	ND		
	Oil in voids/staining	18 - 19						
	Staining	19 - 22						
T-20S(1)	Staining/odor	6 - 7	Staining/Organics	6 - 7	9.5 - 14.5	ND		
	Staining	8 - 9.5, 10.3 - 10.5						
T-20S(2)	Staining	11.6 - 17	Peat	18 - 20	16 - 21	Yes		
	Oil in voids	14.2 - 14.5, 17 - 18	Staining/Organics	14 - 18				
	Odor	12 - 18, 19 - 20						
T-20S(3)	Oil in voids/odor	6.3 - 6.8	Peat-like material	3.8 - 4, 7.5 - 8	8.5 - 13.5	ND		
	Staining	10 - 10.5						
T-20S(4)	Staining	6 - 9.9, 14 - 16	Peat-like Material	5.8 - 6.1	13 - 18	ND		
	Oil in voids	9.5 - 9.9, 12 - 14	Peat	9.9 - 12				
	Odor	11.9 - 14						
T-20S(5)	Oil in voids	4 - 6.8	Peat	5.8 - 10	7 - 12	Yes		
	Odor	4 - 8						
T-20S(6)	Odor	10 - 12	Peat-like material	14 - 16	16 - 21	ND		
	Oil in voids	17 - 18, 19 - 19.6, 20.4 - 21.5						
	Staining	10.5 - 14, 17 - 18						
T-21S	No oil noted		Peat-like Material	16 - 20	17 - 22	ND		
	Staining	15 - 15.5						
T-21D	Odor	15 - 16.5, 18.75 - 20.75	Peat	16.5 - 17	63 - 68	ND		
T-22W	Staining	9.5 - 12	Peat-like material	9.5 - 12	7 - 12	ND	*Soil description taken from	m T-22S
	No oil noted							
T-22S	Staining	9.5 - 12	Peat-like material	9.5 - 12	16 - 21	ND		
	No oil noted		Peat	12 - 15.5				
T-22D	Odor	9 - 11	30% Peat	11 - 15	56 - 61	ND		
	No oil noted		Peat-like Material	15 - 16				
T-45W	No oil noted				8 - 13	ND		
	Staining	10 - 15						
T-46W	No oil noted				7 - 12	ND		
	Staining	7 - 8						
T-47W	No oil noted		Peat	8.5 - 9.5, 12 - 12.5, 14 - 16	11 - 16	ND		
	Staining	4.5 - 6.5, 9.5 - 12						
MR-3D	No oil noted				63 - 68	ND		

Note: Strata to the west of T-20S(5) are estimated, as no borings were conducted west of this location.

	-	
DATE	DRWN	REVISIONS

Cost Estimates – SWMU 5 LNAPL Alternatives

NAPL Recovery Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 1: SWMU 5 - Passive Recovery

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Four 4" wells will be drilled and a passive skimmer will be installed in each.

-875 gallons of recoverable NAPL.

-55 gallon drums will be used to collect NAPL.

-Weekly maintenance will be performed, including emptying skimmers (1 hour per event).

-When recovery rate decreases, absorbent socks will be used for ~1 year, changing sock monthly.

NAPL Recovery

Item	Description	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total
1	Passive Skimmer	4	EA	\$955.00	\$3,820
2	55 Gallon Drums	17	EA	\$110.41	\$1,877
3	Temporary Containment Area	1	EA	\$192.92	\$193
4	Installation	8	hour	\$59.16	\$473
5	Absorbent Socks	48	EA	\$2.33	\$112
	Subtotal				\$6,000

Installation of Wells

Item	Description	Quantity	<u>Unit</u>	Unit Cost	Total
1	Mobilization and Demobilization	1	LS	\$1,500.00	\$1,500
2	Subsistence	6	man/day	\$100.00	\$600
3	10" Sonic Drilling	80	feet	\$55.00	\$4,400
4	4" SS x HDPE Well Labor and Materials	80	ft	\$69.00	\$5,520
5	Restore Site and Waste Management	5	hr	\$350.00	\$1,750
6	Decon Time (Rig and 3 Man Crew)	5	hr	\$300.00	\$1,500
7	Backhoe	0.5	week	\$1,200.00	\$600
	Subtotal				\$16,000

SUBTOTAL - CONSTRUCTION & STARTUP

Engineer	ing				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Engineering (12%)	1	LS	\$2,640	\$2,640
2	Construction Quality Assurance (10%)	1	LS	\$2,200	\$2,200
3	Contingency (20%)	1	LS	\$4,400	\$4,400

TOTAL CAPITAL COSTS

\$31,000

\$9,000

\$22,000

Long Term Monitoring						
<u>Item</u>	Description_	Quantity	<u>Unit</u>	Unit Cost	Total	
1	Remove Product, Skimmer Maintenance	208	hours	\$59.16	\$12,305	
2	NAPL Disposal	0.5	drum	\$250.00	\$125	
	Annual Operation and Maintenance Cost				\$12,400	
	TOTAL OPERATION AND MAINTENANCE				\$186,000	
NPV OPERATION AND MAINTENANCE				\$151,294		

ALTERNATIVE 1, TOTAL COST \$217,000 ALTERNATIVE 1, NPV \$183,000

Note: NPV calculation using RoR of 2.7%

Subtotal
NAPL Recovery Estimates ESOI Otter Creek Facility, Oregon, Ohio

Alternative 2: SWMU 5 - Active Recovery

Cumulative Cost Deflator, 2005 to 2010 ->

1.11617

Scope and Assumptions

-Two 4" wells will be drilled and a solar sipper (active skimmer) will be installed in each.

-875 gallons of recoverable NAPL.

-55 gallon drums will be used to collect NAPL and will be emptied 6 times per year (4 hours per event). -Weekly maintenance will be performed (1 hour per event).

-When recovery rate decreases, absorbent socks will be used for ~1 year, changing sock monthly.

NAPL Recovery Equipment

ltem 1	Description Solar Sipper System	Quantity 2	<u>Unit</u> EA	<u>Unit Cost</u> \$6,355.00	<u>Total</u> \$12,710
2	55 Gallon Drums	17	EA	\$110.41	\$1,877
3	Temporary Containment Area	2	EA	\$192.92	\$386
4	Installation	8	hour	\$59.16	\$473
5	Absorbent Socks	24	EA	\$2.33	\$56
	Subtotal				\$ 16,000

Well Installation

Item	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Mobilization and Demobilization	1	LS	\$1,500.00	\$1,500
2	Subsistence	3	man/day	\$100.00	\$300
3	10" Sonic Drilling	40	feet	\$55.00	\$2,200
4	4" SS x HDPE Well Labor and Materials	40	ft	\$69.00	\$2,760
5	Restore Site and Waste Management	3	hr	\$350.00	\$1,050
6	Decon Time (Rig and 3 Man Crew)	3	hr	\$300.00	\$900
7	Backhoe	0.5	week	\$1,200.00	\$600
	Subtotal				\$9,000

SUBTOTAL - CONSTRUCTION & STARTUP

\$25,000

Engineer	ing				
<u>Item</u>	Description_	<u>Quantity</u>	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Engineering (12%)	1	LS	\$3,000	\$3,000
2	Construction Quality Assurance (10%)	1	LS	\$2,500	\$2,500
3	Contingency (20%)	1	LS	\$5,000	\$5,000
	Subtotal				\$11,000

TOTAL CAPITAL COSTS

\$36,000

n Monitoring				
Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
Remove Product, Maintenance	76	hours	\$59.16	\$4,496
NAPL Disposal	6	drums	\$250.00	\$1,500
Annual Operation and Maintenance Cost				\$6,000
	TOTAL OPER	\$18,000		
	NPV OPER	\$17,070		
	Description Remove Product, Maintenance NAPL Disposal Annual Operation and Maintenance Cost	Description Quantity Remove Product, Maintenance 76 NAPL Disposal 6 Annual Operation and Maintenance Cost TOTAL OPER/ NPV OPER/	Description Quantity Unit Remove Product, Maintenance 76 hours NAPL Disposal 6 drums Annual Operation and Maintenance Cost TOTAL OPERATION AND NPV OPERATION AND	Description Quantity Unit Unit Cost Remove Product, Maintenance 76 hours \$59.16 NAPL Disposal 6 drums \$250.00 Annual Operation and Maintenance Cost TOTAL OPERATION AND MAINTENANCE NPV OPERATION AND MAINTENANCE

ALTERNATIVE 2, TOTAL COST \$54,000 ALTERNATIVE 2, NPV \$54,000

Hydrocarbon Recovery System

Geotech Solar Sipper

The Geotech Solar Sipper is a solar powered remediation system, designed for remote applications where electrical power is either not available or not economically feasible to provide. The compact, easy to install features make this unit an industry favorite!

Unlike other solar powered pumping systems, which use a standard bladder pump operated by an air compressor, the Solar Sipper uses a unique vacuum/pressure canister pump to recover hydrocarbons through a floating oleophilic/hydrophobic intake filter. When the pump canister is filled, the pump reverses, pressurizes the system and pumps the recovered fluid to the surface and into a storage vessel.

The Geotech Solar Sipper can effectively extract fluids from depths to 180 feet below ground surface and recover viscous hydrocarbons such as 90 weight oil when a fixed intake is utilized.

OPERATION

The Geotech Solar Sipper recovers floating hydrocarbons (LNAPL) from wells using a solar powered pump. The system utilizes a density float skimmer with a 60, or 100 mesh screen, or specific gravity float, depending on the application. The skimmer floats just above the oil/water interface to collect and remove hydrocarbons from the well into the optional above ground storage tank.

The Geotech Solar Sipper is also available for recovery of sinking product (DNAPL) from wells when using a fixed intake.

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

Hydrocarbon Recovery System

Geotech Solar Sipper

CONFIGURATION	SPECIFICATIONS			
Control Panel with:	Applications:	2" (5.8cm) or larger	recovery wells	
NEMA 4 Enclosure	Recovery Rate:	.2 gallons (.750 ml)	per cycle	
• 64 watt solar panel with adjustable mounting plate	Maximum Operating Depth:	180 feet (54.86m)		
Tankfull Shut-Off Switch (2 inch NPT bung-fitting)	Power Requirements:	12-15 Volts DC input @ 7.5 Amps 90-105 Watts usage		
 Microprocessor Controller with alpha-numeric vacuum fluorescent display 	Maximum Pressure:	/e: 100 psi		
On/Off Switch			obic mesh screen	
Pressure/Vacuum Pump	Controller:	Oleophilie/Hydroph		
Pressure/Vacuum Gauge	Size	Size 7" D x 17.4" L x 14" W (18cm D x 44.2cm L x 35.6cm W)		
Skimmer Assembly with:	Approximate Weight Rating	18.4 lbs. NEMA 4		
 2" or 4" Intake Downwell Collection Canister 2" or 4" Slip Fit Well Cap Air and Discharge Tubing, 100' of each 	Down Well Collection Canister: Size Weight Materials	ter: iize 23.5" L x 1.75" OD ght 4.5 lbs. ials 303 and 304 stainless steel, fluxible tubing DVC and bases		
 Options include: 55 Gallon Steel Product Drum Dual Containment Product Tank Additional Air and Discharge Tubing 	Skimmer Assembly: Effective Travel Range Size Weight Operating Temperature	2" Model 12" 35.5" L x 1.75" OD 1.75 lbs. 32° to 100°F	4" Model 24" 35.5" L x 3.75" OD 2.25 lbs.	
Power Cable Lead	Materials	304 Stainless Steel, PVC, Polypropylene	Polyethylene, e, Brass	
 Screened Skimmer Assemblies Wall Mount Kit Pole Mount Kit AGM Solar Battery 104 AH, 12 Volt 	Tubing Sizes: Air Discharge	nm OD) mm OD)		
	Solar Panel: Rated Operating Voltage Operating Currant (Amps) Size Approximate Weight	Power 64 Watt 16.5 3.88 51.8" H x 59.0" W 40.2 lbs.		

Solar Sipper Maximum Recommended Vacuum Times

Solar Sipper Time to Discharge (based on #2 Diesel)

CALL GEOTECH TODAY (800) 833-7958

Geotech Environmental Equipment, Inc. 2650 East 40th Avenue • Denver, Colorado 80205 (303) 320-4764 • (800) 833-7958 • FAX (303) 322-7242 email: sales@geotechenv.com website: www.geotechenv.com

REFERENCE PAGES

Average Viscosities of Miscellaneous Liquids

Application Graph for Geotech Oleophilic/Hydrophilic Screens

Saybolt Universal SSU Stokes		Centistokes	Poises*	Centipoises	Degrees Engler	Redwood No. 1 Seconds	Typical Liquids at 65°F
27.7	0.006	0.600	0.005	0.480	NA	27.99	Gasoline
31	0.010	1.00	0.008	0.800	1	29	Water
33	0.020	2.00	0.016	1.60	1.11	31	Mineral Spirits
35	0.025	2,50	0.020	2.00	1.17	32	Kerosene/Jet Fuel
37	0.030	3.00	0.024	2.40	1.23	33	No. 2 Diesel
39	0.040	4.00	0.032	3,20	1.3	36	No. 2 Fuel Oil
100	0.202	20.2	0.162	16.2	3.02	86	Transformer Oil
170	0.363	36.3	0.290	29.0	4.88	145	No. 4 Fuel Oil
200	0.432	43.2	0.346	34.6	5.92	170	Hydraulic Oil
500	1.10	110	0.880	88	14.6	423	SAE 10 Oil
1,000	2.16	216	1,73	173	29.2	847	SAE 30 Oil
3,000	6.5	647	5.2	518	87.6	2,541	SAE 50 Oil
10,000	21.6	2,160	17.3	1,728	292.0	8,471	STE 70 Oil
20,000	43.2	4,320	34.6	3,456	584,0	16,941	No. 6 Fuel Oil (Bunker C)
50,000	108	10,800	86	8,640	1460.0	42,353	Molasses B
100,000	216	21,600	173	17,280	2920.0	84,706	Molasses C

*Poises and centipoises are given for oil of .8 specific gravity. Releationship: Centistokes x Specific Gravity = Centipoise

Viscosity Unit Conversion Chart

Saybolt						Redwood	
Universal					Degrees	No. 1	Typical Liquids
SSU	Stokes	Centistokes	Poises	Centipoises	Engler	Seconds	at 65°F
27.7	0.006	0.6	0.005	0.48	NA	27.99	Gasoline
31	0.01	1	0.008	0.8	1	29	Water
33	0.02	2	0.016	1.6	1.11	31	Mineral Spirits
35	0.025	2.5	0.02	2	1.17	32	Kerosene/Jet Fuel
37	0.03	3	0.024	2.4	1.23	33	No. 2 Diesel
39	0.04	4	0.032	3.2	1.3	36	No. 2 Fuel Oil
100	0.202	20.2	0.162	16.2	3.02	86	Transformer Oil
170	0.363	36.3	0.29	29	4.88	145	No. 4 Fuel Oil
200	0.432	43.2	0.346	34.6	5.92	170	Hydraulic Oil
500	1.1	110	0.88	88	14.6	423	SAE 10 Oil
1,000	2.16	216	1.73	173	29.2	847	SAE 30 Oil
3,000	6.5	647	5.2	518	87.6	2,541	SAE 50 Oil
10,000	21.6	2,160	17.3	1,728	292	8,471	STE 70 Oil
20,000	43.2	4,320	34.6	3,456	584	16,941	No. 6 Fuel Oil (Bunker C)
50,000	108	10,800	86	8,640	1460	42,353	Molasses B
100,000	216	21,600	173	17,280	2920	84,706	Molasses C

6/2/2010 Data

Temp (°F)	CST	SSU
60	529.5	2461.90055
77	254.8	1190.34172
104	98.16	465.270824
194	13.54	73.573306
212	10.43	59.177427

APPENDIX H

Supporting Documentation for CM Analysis – AOC 1

CONTENTS

Water Recovery Graphs Data Table Cost Estimates – AOC 1 Alternatives Water Recovery Graphs

Data Table

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
DEWATEI	RING TREN	CHES							
General									
J & H	P-3W(5N)	5/5/2010	Conductivity	2980		umhos/cm		1	
J & H	P-3W(5N)	5/5/2010	рН	6.91		SU		1.00	
J & H	P-3W(5N)	5/5/2010	Chloride	341		mg/L		1	
J & H	P-3W(5N)	5/5/2010	Biological Oxygen Demand	32		mg/L		4	
J & H	P-3W(5N)	5/5/2010	Total Phenols	12		ug/L		5	
J & H	P-3W(5N)	5/5/2010	Sulfate	324		mg/L		5	
J & H	P-3W(5N)	5/5/2010	Total Suspeneded Solids	31		mg/L		5	
TA-NC	P-3W(5N)	5/5/2010	n-Hexane Extractable Material (O&G)	8.9		mg/L	0.77	5	1
TA-NC	P-3W(5N)	5/5/2010	Chemical Oxygen Demand (COD)	212		mg/L	20.4	40	4
Dissolved N	letals								
TA-NC	P-3W(5N)	5/5/2010	Barium-DISS	676	В	ug/L	0.67	200	1
TA-NC	P-3W(5N)	5/5/2010	Chromium-DISS	3	J	ug/L	2.2	5	1
TA-NC	P-3W(5N)	5/5/2010	Iron-DISS	87.7	J	ug/L	81	100	1
TA-NC	P-3W(5N)	5/5/2010	Magnesium-DISS	95000	В	ug/L	34	5000	1
TA-NC	P-3W(5N)	5/5/2010	Sodium-DISS	235000		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)							
TA-NC	P-3W(5N)	5/5/2010	PCB-1254	27		ug/L	0.8	5	5
Volatile Or	ganic Comp	ounds (VOC	<u>()</u>						
TA-NC	P-3W(5N)	5/5/2010	Benzene	110		ug/L	2.2	17	16.67
TA-NC	P-3W(5N)	5/5/2010	Tetrahydrofuran	410		ug/L	7	83	16.67
Semi-Volat	ile Organic (Compounds	(SVOC)			~ 0			
TA-NC	P-3W(5N)	5/5/2010	1,4-Dioxane	21	J	ug/L	2	40	4
TA-NC	P-3W(5N)	5/5/2010	Acenaphthene	2.5	J	ug/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Anthracene	1.3	J	ug/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Benzo(a)anthracene	1.5	J	ug/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Benzo(a)pyrene	1.5	J	ng/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Benzo(b)fluoranthene	1.0	J	ng/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Benzo(ghi)pervlene	1.6	J	ng/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	his(2-Ethylberyl) phthalate	6.1	I	ug/L ug/I	3.2	40	4
TA-NC	P-3W(5N)	5/5/2010	Chrysene	1.8	J	ug/L ug/I	0.4	40	4
TA-NC	$P_{-3W(5N)}$	5/5/2010	Dibenz(a h)anthracene	1.0	J	ug/L	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Fluoranthene	1.0	J	ug/L ug/I	0.4	40	4
TA-NC	P-3W(5N)	5/5/2010	Fluorene	2.9	J	ug/L ug/I	0.4	40	4
TA-NC	$P_{-3W(5N)}$	5/5/2010	Indeno(1.2.3-cd)nyrene	1.1	J	ug/L	0.4	40	4
TA NC	$P_3W(5N)$	5/5/2010	Nanhthalana	1.1	J	ug/L	0.4	40	4
TA NC	$P_{3W(5N)}$	5/5/2010	Phenonthrone	2.0	J	ug/L	0.4	40	4
TA NC	$P_{3W}(5N)$	5/5/2010	Dyrana	2.2	J	ug/L	0.4	40	4
Total Orga	1-3W(3N)	$\frac{3}{3}\frac{2010}{2010}$	1 yrene	2.1	J	ug/L	0.4	40	+
TOTAL OLGA	D 2W(5N)	5/5/2010	Total Organia Halogana	280		ng/I	05	150	5
TA-NC	P - 3W(5N)	5/5/2010	Total Organic Halogens	260		ug/L ug/I	95	150	5
TA-NC	P-3W(3N)	5/5/2010	Total Organic Halogens	420		ug/L ug/I	95	150	5
TA NC	$\mathbf{D} = \mathbf{W}(\mathbf{S}\mathbf{N})$	5/5/2010	Total Organic Halogens	429		ug/L ug/I	95	150	5
IA-NC	F-3W (3N)	3/3/2010	Average TOX	257.75		ug/L	95	150	5
Total Orea	nia Carbor (TOC	Average IUA	337.75				<u> </u>	
Total Orga	D 2W(5N)	5/5/2010	Total Organia Carbon	165			0.24	1	1
TA-NC	$\Gamma - 3 W (3N)$	5/5/2010	Total Organic Carbon	10.3		nig/L mg/I	0.24	1	1
TA-NU	$\Gamma - 3W(3N)$	5/5/2010	Total Organic Carbon	15.8		mg/L	0.24	1	1
TA-NC	$\Gamma - 3 W (3N)$	5/5/2010	Total Organic Carbon	10.5		ilig/L mg/I	0.24	1	1
TA-NU	r-3W(3N)	3/3/2010	Average TOC	17.5		ilig/L	0.24	1	1
			Average IUC	16.6					
Correl									
General	$\mathbf{D} = \mathbf{A} \mathbf{E} (\mathbf{A} \mathbf{C})$	E /E /0010	O to - to - to -	1700		t /		1	
J&H	P-4E(4S)	5/5/2010		1780		umnos/cm		1 00	ļ
J&H	P-4E(4S)	5/5/2010	рн	6.55		SU		1.00	
J&H	P-4E(4S)	5/5/2010	Chloride	199		mg/L		1	
J&H	P-4E(4S)	5/5/2010	Biological Oxygen Demand	16		mg/L		4	
J & H	P-4E(4S)	5/5/2010	Sulfate	308		mg/L		5	ļ
J & H	P-4E(4S)	5/5/2010	Total Suspeneded Solids	51		mg/L		5	

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	P-4E(4S)	5/5/2010	n-Hexane Extractable Material (O&G)	10.3		mg/L	0.77	5	1
TA-NC	P-4E(4S)	5/5/2010	Chemical Oxygen Demand (COD)	86.7		mg/L	5.1	10	1
Dissolved M	letals								
TA-NC	P-4E(4S)	5/5/2010	Barium-DISS	179	ВJ	ug/L	0.67	200	1
TA-NC	P-4E(4S)	5/5/2010	Iron-DISS	429		ug/L	81	100	1
TA-NC	P-4E(4S)	5/5/2010	Magnesium-DISS	55500	В	ug/L	34	5000	1
TA-NC	P-4E(4S)	5/5/2010	Sodium-DISS	117000		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)				0			
Volatile Or	ganic Comp	ounds (VOC							
TA-NC	P-4E(4S)	5/5/2010	1.1-Dichloroethane	150		ug/L	0.75	5	5
TA-NC	P-4E(4S)	5/5/2010	1.2-Dichloroethene (total)	23		ug/L	1.7	10	5
TA-NC	P-4E(4S)	5/5/2010	1.2-Dichloropropane	1.5	J	ug/L	0.9	5	5
TA-NC	P-4E(4S)	5/5/2010	Benzene	2.7	J	ug/L	0.65	5	5
TA-NC	P-4E(4S)	5/5/2010	Chloroethane	170		ug/L	1.4	5	5
TA-NC	P-4E(4S)	5/5/2010	Ethylbenzene	170		ug/L	0.85	5	5
TA-NC	P-4E(4S)	5/5/2010	Tetrahydrofuran	35		ug/L	2.1	25	5
TA-NC	P-4E(4S)	5/5/2010	Toluene	41		ug/L	0.65	5	5
TA-NC	$P_{4}F(4S)$	5/5/2010	Trichloroethene	19	T	ug/L	0.85	5	5
TA-NC	P-4E(4S)	5/5/2010	Vinyl chloride	36	5	ug/L 11g/L	1.1	5	5
Semi-Volati	ile Organic (^o omnounds	(SVOC)	20		ug/12			
TA-NC	$P_4E(4S)$	5/5/2010	1 4-Dioxane	30		1 ισ/Ι .	0.49	10	1
TA-NC	$P_{4E}(4S)$	5/5/2010	2 4-Dimethylphenol	0.86	T	ug/L	0.42	10	1
TA NC	$P_{4E(4S)}$	5/5/2010	Acenandthana	0.30	J	ug/L ug/I	0.0	10	1
TA NC	$P_{4E}(4S)$	5/5/2010	Benzo(b)fluoranthana	0.27	J	ug/L	0.1	10	1
TA-NC	$P_{4E}(4S)$	5/5/2010	bic(2 Ethylboxyl) phthalata	0.23	J	ug/L	0.1	10	1
TA-NC	$P_{4E}(4S)$	5/5/2010	Butyl bonzyl phthalata	0.86	J T	ug/L ug/I	0.8	10	1
TA-NC	P - 4E(4S)	5/5/2010	Eluorono	0.80	J T	ug/L ug/I	0.0	10	1
TA-NC	P - 4E(4S)	5/5/2010	Provene	0.28	J T	ug/L	0.1	10	1
TA-NC	P-4E(4S)	3/3/2010	Pyrene	0.37	J	ug/L	0.1	10	1
Total Orga	$D_{AE(AS)}$	5/5/2010	Total Organia Halagana	224		na/I	20	60	2
TA-NC	P - 4E(4S)	5/5/2010	Total Organic Halogens	120		ug/L	20	60	2
TA-NC	P-4E(4S)	5/5/2010	Total Organic Halogens	189		ug/L	38	60	2
TA-NC	P-4E(4S)	5/5/2010	Total Organic Halogens	1/4		ug/L	38	60	2
IA-NC	P-4E(4S)	5/5/2010	Total Organic Halogens	215		ug/L	38	60	Ζ
T-4-LO	nie Cerrherry (TOC	Average IUX	200.5				 	
Total Orga	nic Carbon (TUC)	T (10) 0 1	16.5		7	0.06		4
TA-NC	P-4E(4S)	5/5/2010	Total Organic Carbon	16.5		mg/L	0.96	4	4
TA-NC	P-4E(4S)	5/5/2010	Total Organic Carbon	15.9		mg/L	0.96	4	4
TA-NC	P-4E(4S)	5/5/2010	Total Organic Carbon	16.3		mg/L	0.96	4	4
IA-NC	P-4E(4S)	5/5/2010	Total Organic Carbon	16.5		mg/L	0.96	4	4
			Average TUC	16.3					
General	D 400/200	F (F 10010		0 / C C		1 /		<u> </u>	
J&H	P-4W(5S)	5/5/2010	Conductivity	2490		umhos/cm		1 00	
J&H	P-4W(5S)	5/5/2010		6.97		5U 7		1.00	
J&H	P-4W(5S)	5/5/2010	Chloride	262		mg/L			
J&H	P-4W(5S)	5/5/2010	Biological Oxygen Demand	7		mg/L		4	
J&H	P-4W(5S)	5/5/2010	Sultate	329		mg/L		5	
J&H	P-4W(5S)	5/5/2010	Total Suspeneded Solids	14		mg/L	0	5	
TA-NC	P-4W(5S)	5/5/2010	n-Hexane Extractable Material (O&G)	3.8	J	mg/L	0.77	5	1
TA-NC	P-4W(5S)	5/5/2010	Chemical Oxygen Demand (COD)	42.9	L	mg/L	5.1	10	1
Dissolved N	1etals				L				
TA-NC	P-4W(5S)	5/5/2010	Barium-DISS	241	В	ug/L	0.67	200	1
TA-NC	P-4W(5S)	5/5/2010	Iron-DISS	1400		ug/L	81	100	1
TA-NC	P-4W(5S)	5/5/2010	Magnesium-DISS	163000	В	ug/L	34	5000	1
TA-NC	P-4W(5S)	5/5/2010	Sodium-DISS	132000		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC							
TA-NC	P-4W(5S)	5/5/2010	1,1-Dichloroethane	0.29	J	ug/L	0.15	1	1
TA-NC	P-4W(5S)	5/5/2010	Benzene	0.6	J	ug/L	0.13	1	1

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	P-4W(5S)	5/5/2010	Chloroethane	7.2		ug/L	0.29	1	1
TA-NC	P-4W(5S)	5/5/2010	Tetrahydrofuran	1.4	J	ug/L	0.42	5	1
Semi-Volat	tile Organic	Compounds	(SVOC)			Ĭ			
TA-NC	P-4W(5S)	5/5/2010	1,4-Dioxane	33		ug/L	0.49	10	1
TA-NC	P-4W(5S)	5/5/2010	bis(2-Ethylhexyl) phthalate	1.5	J	ug/L	0.8	10	1
Total Orga	nic Halogen	s (TOX)							
TA-NC	P-4W(5S)	5/5/2010	Total Organic Halogens	58.6		ug/L	19	30	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Halogens	65.8		ug/L	19	30	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Halogens	74.9		ug/L	19	30	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Halogens	40.9		ug/L	19	30	1
			Average TOX	60.1					
Total Orga	nic Carbon	(TOC)							
TA-NC	P-4W(5S)	5/5/2010	Total Organic Carbon	17.5		mg/L	0.24	1	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Carbon	16.9		mg/L	0.24	1	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Carbon	17.6		mg/L	0.24	1	1
TA-NC	P-4W(5S)	5/5/2010	Total Organic Carbon	17.1		mg/L	0.24	1	1
			Average TOC	17.3					
General									
J & H	P-5E(6N)	5/5/2010	Conductivity	4030		umhos/cm		1	
J & H	P-5E(6N)	5/5/2010	pH	6.95		SU		1.00	
J & H	P-5E(6N)	5/5/2010	Chloride	999		mg/L		1	
J&H	P-5E(6N)	5/5/2010	Biological Oxygen Demand	13		mg/L		4	
J&H	P-5E(6N)	5/5/2010	l otal Phenois	26		ug/L		5	
J&H	P-5E(6N)	5/5/2010	Suirate	13		mg/L m a/I		5	
	P-3E(6N)	5/5/2010	n Havana Extractable Material (O&C)	11	т	mg/L	0.77	5	1
TA-NC	P-3E(6N)	5/5/2010	Chemical Owners Demand (COD)	4.0	J	mg/L mg/I	5.1	5 10	1
Discolved N	F-JE(0IN)	3/3/2010	Chemical Oxygen Demand (COD)	07		IIIg/L	3.1	10	1
TA-NC	$P_{-}5F(6N)$	5/5/2010	Barium-DISS	2050	в	11g/I	0.67	200	1
TA-NC	P-5E(6N)	5/5/2010	Iron-DISS	2480	2	ug/L	81	100	1
TA-NC	P-5E(6N)	5/5/2010	Magnesium-DISS	93100	В	ug/L	34	5000	1
TA-NC	P-5E(6N)	5/5/2010	Sodium-DISS	535000	-	ug/L	590	5000	1
Polychlori	nated Biphyr	nls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC	2)						
TA-NC	P-5E(6N)	5/5/2010	Benzene	66		ug/L	0.26	2	2
TA-NC	P-5E(6N)	5/5/2010	Chlorobenzene	5.7		ug/L	0.3	2	2
TA-NC	P-5E(6N)	5/5/2010	Tetrahydrofuran	5.6	J	ug/L	0.84	10	2
TA-NC	P-5E(6N)	5/5/2010	Toluene	0.47	J	ug/L	0.26	2	2
Semi-Volat	tile Organic	Compounds	(SVOC)						
TA-NC	P-5E(6N)	5/5/2010	1,4-Dichlorobenzene	0.52	J	ug/L	0.34	10	1
TA-NC	P-5E(6N)	5/5/2010	1,4-Dioxane	5	J	ug/L	0.49	10	1
TA-NC	P-5E(6N)	5/5/2010	2,4-Dimethylphenol	27		ug/L	0.8	10	1
TA-NC	P-5E(6N)	5/5/2010	Benzo(a)anthracene	0.53	J	ug/L	0.1	10	1
TA-NC	P-5E(6N)	5/5/2010	Benzo(ghi)perylene	0.27	J	ug/L	0.1	10	1
TA-NC	P-5E(6N)	5/5/2010	bis(2-Ethylhexyl) phthalate	1.8	J	ug/L	0.8	10	1
TA-NC	P-5E(6N)	5/5/2010	Chrysene	0.58	J	ug/L	0.1	10	1
TA-NC	P-5E(6N)	5/5/2010	Diethyl phthalate	1.8	J	ug/L	0.6	10	1
TA-NC	P-5E(6N)	5/5/2010	Di-n-butyl phthalate	1.5	J	ug/L	0.6/	10	1
TA-NC Total Orga	P-SE(6N)	5/5/2010 a (TOY)	Phenoi	1.2	J	ug/L	0.6	10	1
TA NC	D 5E(6N)	5/5/2010	Total Organic Halogans	1000		uα/I	10	20	1
TA NC	P = 5E(6N)	5/5/2010	Total Organic Halogens	1080		ug/L ug/I	19	30 150	5
TA-NC	$P_{5}E(0N)$	5/5/2010	Total Organic Halogens	1250		ug/L ug/I	95	150	5
TA-NC	$P_{5}E(6N)$	5/5/2010	Total Organic Halogens	1140		ug/L ug/I	95	150	5
11110	1 51 (011)	5,5/2010	Average TOX	1140		ч <u>6</u> /12	,5	150	5
Total Orga	nic Carbon	(TOC)		1145					
TA-NC	P-5E(6N)	5/5/2010	Total Organic Carbon	26.2		mg/L	0.24	1	1
TA-NC	P-5E(6N)	5/5/2010	Total Organic Carbon	24.3	1	mg/L	0.24	1	1

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	P-5E(6N)	5/5/2010	Total Organic Carbon	24.7		mg/L	0.24	1	1
TA-NC	P-5E(6N)	5/5/2010	Total Organic Carbon	24.2		mg/L	0.24	1	1
			Average TOC	24.9					
General			~						
J & H	P-5W(7N)	5/5/2010	Conductivity	2460		umhos/cm		1	
J & H	P-5W(7N)	5/5/2010	pH	6.91		SU		1.00	
J&H	P-5W(7N)	5/5/2010	Chloride	3/3		mg/L		1	
J&H	P-5W(7N)	5/5/2010	Sulfate	20		mg/L m a/I		4	
	P-3W(7N)	5/5/2010	n Havana Extractable Material (O&C)	290	т	mg/L mg/I	0.77	5	1
TA-NC	P-3W(7N)	5/5/2010	Chamical Oxygan Damand (COD)	2.1	J	mg/L mg/I	5.1	10	1
Dissolved N	Metals	5/5/2010	Chemical Oxygen Demand (COD)	07.4		IIIg/L	5.1	10	1
TA-NC	P-5W(7N)	5/5/2010	Barium-DISS	356	в	11σ/L.	0.67	200	1
TA-NC	P-5W(7N)	5/5/2010	Iron-DISS	761	2	ug/L	81	100	1
TA-NC	P-5W(7N)	5/5/2010	Magnesium-DISS	86600	В	ug/L	34	5000	1
TA-NC	P-5W(7N)	5/5/2010	Sodium-DISS	186000	_	ug/L	590	5000	1
Polychlori	nated Biphyr	nls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC	C)						
TA-NC	P-5W(7N)	5/5/2010	1,2-Dichloroethene (total)	0.59	J	ug/L	0.34	2	1
TA-NC	P-5W(7N)	5/5/2010	1,4-Dioxane	22	J	ug/L	19	50	1
TA-NC	P-5W(7N)	5/5/2010	Benzene	8.4		ug/L	0.13	1	1
TA-NC	P-5W(7N)	5/5/2010	Chlorobenzene	1.4		ug/L	0.15	1	1
TA-NC	P-5W(7N)	5/5/2010	Ethylbenzene	0.69	J	ug/L	0.17	1	1
TA-NC	P-5W(7N)	5/5/2010	Tetrahydrofuran	1.2	J	ug/L	0.42	5	1
Semi-Volat	tile Organic	Compounds	(SVOC)						
TA-NC	P-5W(7N)	5/5/2010	1,4-Dioxane	19		ug/L	0.49	10	1
TA-NC	P-5W(7N)	5/5/2010	Acenaphthene	0.2	J	ug/L	0.1	10	1
TA-NC	P-5W(7N)	5/5/2010	bis(2-Ethylhexyl) phthalate	15	-	ug/L	0.8	10	1
TA-NC	P-5W(7N)	5/5/2010	Diethyl phthalate	1.4	J	ug/L	0.6	10	1
Total Orga	nic Halogen	s (TOX)	T . 10	220		~	20	60	
TA-NC	P-5W(7N)	5/5/2010	Total Organic Halogens	220		ug/L	38	60	2
TA-NC	P-5W(/N)	5/5/2010	Total Organic Halogens	214		ug/L	38	60	2
TA-NC	P-3W(7N)	5/5/2010	Total Organic Halogens	270		ug/L	28	60	2
IA-NC	F-3W(/N)	3/3/2010	Average TOX	273		ug/L	30	00	Z
Total Orga	nic Carbon	(TOC)	Average TOA	243					
TA-NC	$P_{-5W(7N)}$	5/5/2010	Total Organic Carbon	23.6		mø/L	0.96	4	4
TA-NC	P-5W(7N)	5/5/2010	Total Organic Carbon	23.8		mg/L	0.96	4	4
TA-NC	P-5W(7N)	5/5/2010	Total Organic Carbon	23.2		mg/L	0.96	4	4
TA-NC	P-5W(7N)	5/5/2010	Total Organic Carbon	22.2		mg/L	0.96	4	4
	``		Average TOC	23.2		<u> </u>			
MONITOI	RING TREN	CHES							
General									
J & H	T-1E(1N)	5/5/2010	Conductivity	1120		umhos/cm		1	
J & H	T-1E(1N)	5/5/2010	рН	7.20		SU		1.00	
J & H	T-1E(1N)	5/5/2010	Chloride	19.4		mg/L		1	
J & H	T-1E(1N)	5/5/2010	Sulfate	408		mg/L		5	
J & H	T-1E(1N)	5/5/2010	Total Suspeneded Solids	6		mg/L		5	
TA-NC	T-1E(1N)	5/5/2010	Chemical Oxygen Demand (COD)	13.3	<u> </u>	mg/L	5.1	10	1
Dissolved I	Metals					~	a –		
TA-NC	T-1E(1N)	5/5/2010	Barium-DISS	66.2	ΒJ	ug/L	0.67	200	1
TA-NC	1-1E(1N)	5/5/2010	Magnesium-DISS	55100	В	ug/L	34	5000	
IA-NC Delevelo	11-1E(IN)	5/5/2010	Soainm-DIS2	15700		ug/L	590	5000	1
Polychlorii	nated Biphyr	us (PCBs)	ן א						
TA NC	T 1E(1ND	5/5/2010	J 1.1. Diskloresthere	0.2	т	na/I	0.15	1	1
IA-NU Semi Volat	1-1E(1N)	Compounds		0.3	J	ug/L	0.13	1	1
Senn- vola	ine organic	compounds			1	1			

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	T-1E(1N)	5/5/2010	bis(2-Ethylhexyl) phthalate	1.3	J	ug/L	0.8	10	1
TA-NC	T-1E(1N)	5/5/2010	Diethyl phthalate	1.1	J	ug/L	0.6	10	1
Total Orga	nic Halogens	s (TOX)							
Total Organ	nic Carbon ((TOC)							
TA-NC	T-1E(1N)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
TA-NC	T-1E(1N)	5/5/2010	Total Organic Carbon	3.9		mg/L	0.24	1	1
TA-NC	T-1E(1N)	5/5/2010	Total Organic Carbon	3.8		mg/L	0.24	1	1
TA-NC	T-1E(1N)	5/5/2010	Total Organic Carbon	3.6		mg/L	0.24	1	1
			Average TOC	3.8					
<u> </u>									
General		- (= (2 .0.1.0		1110				ļ	
J&H	T-IM(2N)	5/5/2010	Conductivity	1110		umhos/cm		1 00	
J&H	T-IM(2N)	5/5/2010	pH	7.03		SU		1.00	
J&H	T-IM(2N)	5/5/2010		19.2		mg/L		<u> </u>	
J&H	T-IM(2N)	5/5/2010		408		mg/L		5	
	1-1M(2N)	5/5/2010	Chamical Owners Demand (COD)	100		mg/L	5 1		1
IA-NC Dissolved N	1-1M(2N)	3/3/2010	Chemical Oxygen Demand (COD)	15		mg/L	3.1	10	1
TA NC	$T_{1}M(2N)$	5/5/2010	Parium DISS	66.0	рı	ug/I	0.67	200	1
TA-NC	T - 1M(2N)	5/5/2010	Magnasium DISS	53500	DJ	ug/L ug/I	24	5000	1
TA-NC	T-IM(2N) T 1M(2N)	5/5/2010	Sodium DISS	15200	Б	ug/L ug/I	500	5000	1
Polychlorin	1-IN(2N)	3/3/2010	Sodium-DISS	13200		ug/L	390	3000	1
I olychlofin Volotilo Or	ateu Bipliyi	aunds (VOC	<i>a)</i>						
TA NC	T $1M(2N)$	5/5/2010	1 1 Dichloroethane	0.46	T	ug/I	0.15	1	1
Semi-Volat	ile Organic (Compounds	(SVOC)	0.40	J	ug/L	0.15	1	1
TA-NC	$T_{-1}M(2N)$	5/5/2010	his(2-Ethylbeyyl) phthalate	1 7	T	ug/I	0.8	10	1
TA-NC	$T_{-1}M(2N)$	5/5/2010	Diethyl phthalate	0.98	J	ug/L ug/I	0.6	10	1
TA-NC	$T_{-1}M(2N)$	5/5/2010	Di-n-butyl phthalate	1.8	J	ug/L ug/I	0.67	10	1
Total Orga	nic Halogen	5/5/2010 s (TOX)	DI-II-Outyi philialate	1.0	J	ug/L	0.07	10	1
Total Orga	nic Carbon ((TOC)							
TA-NC	T-1M(2N)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
TA-NC	T-1M(2N)	5/5/2010	Total Organic Carbon	4.2		mg/L	0.24	1	1
TA-NC	T-1M(2N)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
TA-NC	T-1M(2N)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
			Average TOC	4.1		6			
General									
J & H	T-1W(3N)	5/5/2010	Conductivity	1220		umhos/cm		1	
J & H	T-1W(3N)	5/5/2010	pH	6.89		SU		1.00	
J & H	T-1W(3N)	5/5/2010	Chloride	23.3		mg/L		1	
J & H	T-1W(3N)	5/5/2010	Sulfate	403		mg/L		5	
TA-NC	T-1W(3N)	5/5/2010	Chemical Oxygen Demand (COD)	10.5		mg/L	5.1	10	1
Dissolved N	/letals								
TA-NC	T-1W(3N)	5/5/2010	Barium-DISS	64.5	ВJ	ug/L	0.67	200	1
TA-NC	T-1W(3N)	5/5/2010	Iron-DISS	233		ug/L	81	100	1
TA-NC	T-1W(3N)	5/5/2010	Magnesium-DISS	59000	В	ug/L	34	5000	1
TA-NC	T-1W(3N)	5/5/2010	Sodium-DISS	16300		ug/L	590	5000	1
Polychlorin	ated Biphyn	lls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC							
TA-NC	T-1W(3N)	5/5/2010	1,1-Dichloroethane	0.45	J	ug/L	0.15	1	1
Semi-Volat	ile Organic (Compounds	(SVOC)						
ΓA-NC	T-1W(3N)	5/5/2010	bis(2-Ethylhexyl) phthalate	1.4	J	ug/L	0.8	10	1
TA-NC	T-1W(3N)	5/5/2010	Di-n-butyl phthalate	1.6	J	ug/L	0.67	10	1
Total Orga	nic Halogens	s (TOX)							
Total Orga	nic Carbon ((TOC)							
TA-NC	T-1W(3N)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
TA-NC	T-1W(3N)	5/5/2010	Total Organic Carbon	3.8		mg/L	0.24	1	1
TA-NC	T-1W(3N)	5/5/2010	Total Organic Carbon	3.2		mg/L	0.24	1	1
TA-NC	T-1W(3N)	5/5/2010	Total Organic Carbon	3.1		mg/L	0.24	1	1

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
			Total TOC	3.5					
General									
J & H	T-2E(1S)	5/5/2010	Conductivity	1220		umhos/cm		1	
J & H	T-2E(1S)	5/5/2010	рН	7.27		SU		1.00	
J & H	T-2E(1S)	5/5/2010	Chloride	37.3		mg/L		1	
J & H	T-2E(1S)	5/5/2010	Total Phenols	9		ug/L	2.5	5	
J & H	T-2E(1S)	6/24/2010	Total Phenols	3	J	ug/L	1	5	
J & H	T-2E(1S)	5/5/2010	Sulfate	412		mg/L		5	
J & H	T-2E(1S)	5/5/2010	Total Suspeneded Solids	6		mg/L		5	
TA-NC	T-2E(1S)	5/5/2010	n-Hexane Extractable Material (O&G)	3.7	J	mg/L	0.77	5	1
TA-NC	T-2E(1S)	5/5/2010	Chemical Oxygen Demand (COD)	13.3		mg/L	5.1	10	1
Dissolved N	letals								
TA-NC T-2E(1S) 5/5/2010 Barium-DISS		Barium-DISS	63.1	ВJ	ug/L	0.67	200	1	
TA-NC	T-2E(1S)	5/5/2010	Magnesium-DISS	56400	В	ug/L	34	5000	1
TA-NC	T-2E(1S)	5/5/2010	Sodium-DISS	21500		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC	<u>()</u>						
Semi-Volat	ile Organic (Compounds	(SVOC)						
TA-NC	T-2E(1S)	5/5/2010	bis(2-Ethylhexyl) phthalate	2.5	J	ug/L	0.8	10	1
TA-NC	T-2E(1S)	5/5/2010	Di-n-butyl phthalate	1.6	J	ug/L	0.67	10	1
TA-NC	T-2E(1S)	5/5/2010	Di-n-octyl phthalate 3		J	ug/L	0.8	10	1
TA-NC	T-2E(1S)	5/5/2010	Naphthalene	0.78	J	ug/L	0.1	10	1
Total Orga	nic Halogens	s (TOX)	•						
TA-NC	T-2E(1S)	5/5/2010	Total Organic Halogens	24.5	J	ug/L	19	30	1
TA-NC	T-2E(1S)	5/5/2010	Total Organic Halogens	19.7	J	ug/L	19	30	1
			Average TOX	18.6	J				
Total Orga	nic Carbon ((TOC)	~~~~~						
TA-NC	T-2E(1S)	5/5/2010	Total Organic Carbon	4.6		mg/L	0.24	1	1
TA-NC	T-2E(1S)	5/5/2010	Total Organic Carbon	4.4		mg/L	0.24	1	1
TA-NC	T-2E(1S)	5/5/2010	Total Organic Carbon	4.4		mg/L	0.24	1	1
TA-NC	T-2E(1S)	5/5/2010	Total Organic Carbon	4.4		mg/L	0.24	1	1
			Average TOC	4.5					
			~~~~~						
General									
J & H	T-2M(2S)	5/5/2010	Conductivity	1430		umhos/cm		1	
J & H	T-2M(2S)	5/5/2010	pH	7.07		SU		1.00	
J & H	T-2M(2S)	5/5/2010	Chloride	44.8		mg/L		1	
J & H	T-2M(2S)	5/5/2010	Sulfate	459		mg/L		5	
TA-NC	T-2M(2S)	5/5/2010	n-Hexane Extractable Material (O&G)	1.2	J	mg/L	0.77	5	1
TA-NC	T-2M(2S)	5/5/2010	Chemical Oxygen Demand (COD)	12.4		mg/L	5.1	10	1
Dissolved N	<b>letals</b>								
TA-NC	T-2M(2S)	5/5/2010	Barium-DISS	56	ВJ	ug/L	0.67	200	1
TA-NC	T-2M(2S)	5/5/2010	Magnesium-DISS	65500	В	ug/L	34	5000	1
TA-NC	T-2M(2S)	5/5/2010	Sodium-DISS	22800		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC	<u>()</u>						
Semi-Volat	ile Organic (	Compounds	(SVOC)						
TA-NC	T-2M(2S)	5/5/2010	Diethyl phthalate	1.2	J	ug/L	0.6	10	1
<b>Total Orga</b>	nic Halogens	s (TOX)							
Total Orga	nic Carbon (	(TOC)		1					
TA-NC	T-2M(2S)	5/5/2010	Total Organic Carbon	4.0		mg/L	0.24	1	1
TA-NC	T-2M(2S)	5/5/2010	Total Organic Carbon	3.7		mg/L	0.24	1	1
TA-NC	T-2M(2S)	5/5/2010	Total Organic Carbon	3.5		mg/L	0.24	1	1
TA-NC	T-2M(2S)	5/5/2010	Total Organic Carbon	3.7		mg/L	0.24	1	1
	, <i>,</i> ,		Average TOC	3.7					
General			<u> </u>		l				
J & H	T-2W(3S)	5/5/2010	Conductivity	1260		umhos/cm		1	
J & H	T-2W(3S)	5/5/2010	pH	7.83		SU		1.00	

	Sample								
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
J & H	T-2W(3S)	5/5/2010	Chloride	57.0		mg/L		1	
J & H	T-2W(3S)	5/5/2010	Sulfate	408		mg/L		5	
J & H	T-2W(3S)	5/5/2010	Total Suspeneded Solids	509		mg/L		5	
TA-NC	T-2W(3S)	5/5/2010	n-Hexane Extractable Material (O&G)	1.2	J	mg/L	0.77	5	1
TA-NC	T-2W(3S)	5/5/2010	Chemical Oxygen Demand (COD)	21.6		mg/L	5.1	10	1
Dissolved N	letals								
TA-NC	T-2W(3S)	5/5/2010	Barium-DISS	78.9	ВJ	ug/L	0.67	200	1
TA-NC	T-2W(3S)	5/5/2010	Magnesium-DISS	60000	В	ug/L	34	5000	1
TA-NC	T-2W(3S)	5/5/2010	Sodium-DISS	30200		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)							
Volatile Or	ganic Comp	ounds (VOC							
Semi-Volat	ile Organic (	Compounds	(SVOC)						
TA-NC	T-2W(3S)	5/5/2010	Diethyl phthalate	1.1	J	ug/L	0.6	10	1
Total Orga	nic Halogens	s (TOX)							
<b>Total Orga</b>	nic Carbon (	(TOC)							
TA-NC	T-2W(3S)	5/5/2010	Total Organic Carbon	6.0		mg/L	0.24	1	1
TA-NC	T-2W(3S)	5/5/2010	Total Organic Carbon	5.8		mg/L	0.24	1	1
TA-NC	T-2W(3S)	5/5/2010	Total Organic Carbon	5.8		mg/L	0.24	1	1
TA-NC	T-2W(3S)	5/5/2010	Total Organic Carbon	5.8		mg/L	0.24	1	1
			Average TOC	5.9					
General									
J & H	TR-6(8N)	5/5/2010	Conductivity	conductivity 954 umhos/cm			1		
J & H	TR-6(8N)	5/5/2010	pH	7.17		SU		1.00	
J & H	TR-6(8N)	5/5/2010	Chloride	10.8		mg/L		1	
J & H	TR-6(8N)	5/5/2010	Sulfate	286		mg/L		5	
TA-NC	TR-6(8N)	5/5/2010	n-Hexane Extractable Material (O&G)	1.4	J	mg/L	0.77	5	1
Dissolved N	letals								
TA-NC	TR-6(8N)	5/5/2010	Barium-DISS	30.8	ВJ	ug/L	0.67	200	1
TA-NC	TR-6(8N)	5/5/2010	Magnesium-DISS	49900	В	ug/L	34	5000	1
TA-NC	TR-6(8N)	5/5/2010	Sodium-DISS	12500		ug/L	590	5000	1
Polychlorin	ated Biphyn	ls (PCBs)				Ĭ			
Volatile Or	ganic Comp	ounds (VOC	2)						
TA-NC	TR-6(8N)	5/5/2010	Toluene	0.25	J	ug/L	0.13	1	1
Semi-Volat	ile Organic (	Compounds	(SVOC)			Ĭ			
TA-NC	TR-6(8N)	5/5/2010	bis(2-Ethylhexyl) phthalate	2.3	J	ug/L	0.8	10	1
Total Orga	nic Halogens	s (TOX)				Ŭ			
Total Orga	nic Carbon (	(TOC)							
TA-NC	TR-6(8N)	5/5/2010	Total Organic Carbon	2.9		mg/L	0.24	1	1
TA-NC	TR-6(8N)	5/5/2010	Total Organic Carbon	2.7		mg/L	0.24	1	1
TA-NC	TR-6(8N)	5/5/2010	Total Organic Carbon	2.7		mg/L	0.24	1	1
TA-NC	TR-6(8N)	5/5/2010	Total Organic Carbon	2.8		mg/L	0.24	1	1
			Average TOC	2.8					
				1					
WYNN RO	AD TRENC	HES		Ì					
General									
J & H	WT-1	5/5/2010	Conductivity	1790		umhos/cm		1	
J & H	WT-1	5/5/2010	pH	7.1		SU		1.00	
J & H	WT-1	5/5/2010	Chloride	25.8		mg/L		1	
J & H	WT-1	5/5/2010	Sulfate	864		mg/L		5	
J & H	WT-1	5/5/2010	Total Suspeneded Solids	13		mg/L		5	
TA-NC	WT-1	5/5/2010	Chemical Oxygen Demand (COD)	8	В	mg/L	5.1	10	1
Dissolved N	Ietals					<i>o</i> –			-
TA-NC	WT-1	5/5/2010	Barium-DISS	11.4	J	ug/L	0.67	200	1
TA-NC	WT-1	5/5/2010	Magnesium-DISS	117000	ŕ	ug/L	34	5000	1
TA-NC	WT-1	5/5/2010	Sodium-DISS	27700		ug/L	590	5000	1
Volatile Or	ganic Comp	ounds (VOC	()	_,,00			275	2000	-
Semi-Volat	ile Organic (	Compounds	(SVOC)	1					

Sample		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	WT-1	5/5/2010	bis(2-Ethylhexyl) phthalate	8.5	J	ug/L	0.8	10	1
<b>Total Orga</b>	nic Halogen	s (TOX)							
<b>Total Orga</b>	nic Carbon	(TOC)							
TA-NC	WT-1	5/5/2010	Total Organic Carbon	3.8		mg/L	0.24	1	1
TA-NC	WT-1	5/5/2010	Total Organic Carbon	3.6		mg/L	0.24	1	1
TA-NC	WT-1	5/5/2010	Total Organic Carbon	3.5		mg/L	0.24	1	1
TA-NC	WT-1	5/5/2010	Total Organic Carbon	3.6		mg/L	0.24	1	1
			Average TOC	3.6					
General									
J & H	WT-2	5/5/2010	Conductivity	2290		umhos/cm		1	
J & H	WT-2	5/5/2010	рН	7.94		SU		1.00	
J & H	WT-2	5/5/2010	Chloride	28.2		mg/L		1	
J & H	WT-2	5/5/2010	Sulfate	1300		mg/L		5	
TA-NC	WT-2	5/5/2010	n-Hexane Extractable Material (O&G)	0.78	J	mg/L	0.77	5	1
Dissolved N	Aetals								
TA-NC	WT-2	5/5/2010	Barium-DISS	14.7	J	ug/L	0.67	200	1
TA-NC	WT-2	5/5/2010	Magnesium-DISS	140000		ug/L	34	5000	1
TA-NC	WT-2	5/5/2010	Sodium-DISS	47000		ug/L	590	5000	1
Volatile Or	ganic Comp	ounds (VOC	2)			Ŭ			
Semi-Volat	ile Organic	Compounds	(SVOC)						
TA-NC	WT-2	5/5/2010	Diethyl phthalate	1.2	J	ug/L	0.6	10	1
						Ŭ			
General									
J & H	WT-3	5/5/2010	Conductivity	2770		umhos/cm		1	
J & H	WT-3	5/5/2010	pH	6.77		SU		1.00	
J & H	WT-3	5/5/2010	Chloride	34.3		mg/L		1	
J & H	WT-3	5/5/2010	Sulfate	1780		mg/L		5	
J & H	WT-3	5/5/2010	Total Suspeneded Solids	16		mg/L		5	
TA-NC	WT-3	5/5/2010	Chemical Oxygen Demand (COD)	6.2	В	mg/L	5.1	10	1
Dissolved N	Aetals					8		-	
TA-NC	WT-3	5/5/2010	Barium-DISS	14.6	J	ug/L	0.67	200	1
TA-NC	WT-3	5/5/2010	Magnesium-DISS	201000		ug/L	34	5000	1
TA-NC	WT-3	5/5/2010	Sodium-DISS	49600		ug/L	590	5000	1
Volatile Or	ganic Comp	ounds (VOC	2)						
Semi-Volat	ile Organic	Compounds	(SVOC)	1					
TA-NC	WT-3	5/5/2010	bis(2-Ethylhexyl) phthalate	0.94	J	ug/L	0.8	10	1
TA-NC	WT-3	5/5/2010	Diethyl phthalate	0.75	J	ug/L	0.6	10	1
Total Orga	nic Halogen	s (TOX)			-	-8-			-
Total Orga	nic Carbon	(TOC)							
TA-NC	WT-3	5/5/2010	Total Organic Carbon	2.9		mg/L	0.24	1	1
TA-NC	WT-3	5/5/2010	Total Organic Carbon	2.9	1	mg/L	0.24	1	1
TA-NC	WT-3	5/5/2010	Total Organic Carbon	2.6		mg/L	0.24	1	1
TA-NC	WT-3	5/5/2010	Total Organic Carbon	2.7		mg/L	0.24	1	1
		2, 3, 2010	Average TOC	2.8			0.21		-
General									
J & H	WT-4	5/5/2010	Conductivity	1870		umhos/cm		1	
J & H	WT-4	5/5/2010	pH	6.92		SU		1.00	
J & H	WT-4	5/5/2010	Chloride	22.6		mg/L		1	
J & H	WT-4	5/5/2010	Sulfate	1000		mg/L		5	
TA-NC	WT-4	5/5/2010	n-Hexane Extractable Material (O&G)	2.7	J	mg/L	0.77	5	1
TA-NC	WT-4	5/5/2010	Chemical Oxygen Demand (COD)	6.8	В	mg/L	5.1	10	1
Dissolved N	<b>/letals</b>		• • · ·						
TA-NC	WT-4	5/5/2010	Barium-DISS	16.2	J	ug/L	0.67	200	1
TA-NC	WT-4	5/5/2010	Magnesium-DISS	98300		ug/L	34	5000	1
TA-NC	WT-4	5/5/2010	Sodium-DISS	23500		ug/L	590	5000	1
Volatile Or	ganic Comp	ounds (VOC		1	[				
Semi-Volat	ile Organic	Compounds	(SVOC)	1	[				
TA-NC	WT-4	5/5/2010	bis(2-Ethylhexyl) phthalate	3	J	ug/L	0.8	10	1

		Sample							
Lab	Sump	Date	Constituent	Result	Q	Unit	MDL	PQL	Dilution
TA-NC	WT-4	5/5/2010	Diethyl phthalate 0.72 J ug/L 0.6		10	1			
<b>Total Orga</b>	nic Halogen	s (TOX)							
<b>Total Orga</b>	nic Carbon	(TOC)							
TA-NC	WT-4	5/5/2010	Total Organic Carbon	2.4		mg/L	0.24	1	1
TA-NC	WT-4	5/5/2010	Total Organic Carbon	2.2		mg/L	0.24	1	1
TA-NC	WT-4	5/5/2010	Total Organic Carbon	2.0		mg/L	0.24	1	1
TA-NC	WT-4	5/5/2010	Total Organic Carbon	1.9		mg/L	0.24	1	1
			Average TOC	2.1					

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

Q: Qualifier

U: Constituent not detected between the MDL and PQL

B: Constituent detected in Laboratory Blank

J: Constituent detected between the MDL and PQL - estimated value

**Cost Estimates – AOC 1 Alternatives** 



BKLEIN 1/7/11 [026174M13_C05]

### Environsafe Services of Ohio, Inc. Cap and Storm Water Cost Estimates

### Alternative 2: AOC 1 - Recap Waterline Right-of-Way

Cumulative Cost Deflator, 2005 to (See Revision Date) ->

1.11160

### Scope and Assumptions

-Regrade/recompact cover soil to promote drainage, 1,800' x 80' along Trench III and IV and 50% of Trench I and II, an area of 144,400 square feet

Regrading AOC 1								
Item	Description_	<u>Quantity</u>	<u>Unit</u>	Unit Cost	Total			
1	Protective Cover Removal	5,333	1 yd ³	\$5.00	\$26,679			
2	Backfilling and Regrading	5,333	1 yd ³	\$5.00	\$26,667			
3	Vegetative Layer Establishment	3.3	acre	\$1,334	\$4,410			
	Subtotal				\$58,000			

### TOTAL CAPITAL COSTS \$ 58,000

Engineer	ing				
Item	Description_	Quantity	<u>Unit</u>	<u>Unit Cost</u>	Total
1	Engineering (12%)	1	project	\$6,960	\$6,960
2	Construction Quality Assurance (10%)	1	project	\$5,800	\$5,800
3	Contingency (20%)	1	percentage	\$11,600	\$11,600
	Subtotal				\$24,000

ALTERNATIVE 2, TOTAL COST \$82,000

### Environsafe Services of Ohio, Inc. Cap and Storm Water Cost Estimates

### Alternative 3: AOC 1 - Installation of a Sheet Pile Wall

Cumulative Cost Deflator, 2005 to (See Revision Date) ->

1.11160

### Scope and Assumptions

-Installation of a sheet pile wall on north side of unit from eastern corner of Cell G to eastern corner of SWMU 9 - estimated 660 feet - between limits of waste and sumps -Wall is 35' deep.

-Regrade/recompact cover soil to promote drainage, 1,800' x 80' along Trench III and IV and 50% of Trench I and II

Installatio	on of Boundary Wall				
<u>Item</u>	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Sheet Pile Wall (35')	23,100	$1 \text{ ft}^2$	\$29	\$667,629
	Subtotal				\$668,000
Regradin	IG AOC 1				
Item	Description	Quantity	<u>Unit</u>	Unit Cost	<u>Total</u>
1	Protective Cover Removal	5,333	1 yd ³	\$5.00	\$26,679
2	Backfilling and Regrading	5,333	1 yd ³	\$5.00	\$26,667
3	Vegetative Layer Establishment	3.3	acre	\$1,334	\$4,410
	Subtotal				\$58,000

### TOTAL CAPITAL COSTS \$ 726,000

Engineer	ing				
Item	Description_	<u>Quantity</u>	<u>Unit</u>	<u>Unit Cost</u>	Total
1	Engineering (12%)	1	project	\$87,120	\$87,120
2	Construction Quality Assurance (10%)	1	project	\$72,600	\$72,600
3	Contingency (20%)	1	percentage	\$145,200	\$145,200
	Subtotal				\$305,000

### ALTERNATIVE 3, TOTAL COST \$1,031,000

### **APPENDIX I**

### **Groundwater Monitoring**

### **CONTENTS**

Leachate Recovery Leachate Levels Relative to Shallow Well Screen Intervals Pages from Permit Module K Leachate Recovery

## Leachate Recovery at Cell F, G, H, and I ESOI Otter Creek Facility, Oregon, Ohio









Leachate Levels Relative to Shallow Well Screen Intervals

	Lea	ichate Levels ESOI (	s Relative to Sha Otter Creek Faci	allow Well Screer lity, Oregon, Ohio	n Intervals			
Associated Unit/Cell	Well ID	Well Zone	Top of Screen Elevation	Bottom of Screen Elevation	Target Leachate Elevation (ft)	Measured Leachate Elevation (ft)		
5 - Central	F-1S	Shallow	576.5	571.5	557	577.5		
5 - Central	G-1S	Shallow	577	572	557	577.5		
5 - Central	MR-1SA	Shallow	571.1	566.1	557	577.5		
5 - Central	MR-4S	Shallow	576.7	571.7	557	577.5		
5 - Central	MR-5S	Shallow	572.9	567.9	557	577.5		
5 - Central	MR-7S	Shallow	568.4	563.4	557	577.5		
5 - West	MR-2S	Shallow	565.5	560.5	565	565.8		
5 - West	MR-3S	Shallow	567	562	565	565.8		
5 - West	MR-6S	Shallow	570.4	565.4	565	565.8		
6	H-25	Shallow	580.5	575.5	567	581.7		
6	SW-15	Shallow	5/1	566	567	581.7		
6	SVV-25	Shallow	577	572.4	567	501.7		
6	300-33	Shallow	577	572	567	501.7		
7	1-03 T 59	Shallow	570.3	575.2	571	592.02		
7	T-35	Shallow	576.3	571.3	571	583.03		
7	T-15S	Shallow	581.5	576.5	571	583.03		
7	T-43S	Shallow	576.7	571.7	571	583.03		
, F	F-19	Shallow	576.5	571.5	538	~538		
F	F-2S	Shallow	575	570	538	<538		
F	F-3S	Shallow	573	568	538	<538		
G	G-1S	Shallow	577	572	546	<546		
G	G-2S	Shallow	574.3	569.3	546	<546		
G	G-3S	Shallow	576	571	546	<546		
G	G-4S	Shallow	579	574	546	<546		
н	H-1S	Shallow	579.5	574.5	541	<541		
Н	H-2S	Shallow	580.5	575.5	541	<541		
н	H-3S	Shallow	581	576	541	<541		
н	H-4S	Shallow	581.5	576.5	541	<541		
Н	H-5S	Shallow	569.5	564.5	541	<541		
Н	H-6S	Shallow	582.5	577.5	541	<541		
1	I-3SA	Shallow	579.5	574.5	543.5	<543.5		
1	I-4S	Shallow	579.6	574.6	543.5	<543.5		
I	I-5SA*	Shallow	578.5	573.5	543.5	<543.5		
I	I-6S	Shallow	582.3	577.3	543.5	<543.5		
1	I-7S	Shallow	584.1	579.1	543.5	<543.5		
I	I-8S	Shallow	584.8	579.8	543.5	<543.5		
М	M-2S	Shallow	584	579	550	<550		
М	M-3S	Shallow	585.5	580.5	550	<550		
М	M-5S	Shallow	583	578	550	<550		
М	M-6S	Shallow	583.5	578.5	550	<550		
M	M-10S	Shallow	584.1	579.1	550	<550		
M	M-11S	Shallow	583.5	578.5	550	<550		
M	M-12S	Shallow	581.7	576.7	550	<550		
M	M-13S	Shallow	584.3	579.3	550	<550		
M	M-14S	Shallow	585.6	580.6	550	<550		
M	M-15S	Shallow	585.2	580.2	550	<550		
M	M-16S	Shallow	582.4	577.4	550	<550		
M	M-17S	Shallow	581.1	576.1	550	<550		
M	M-18S	Shallow	579.1	574.1	550	<550		
M	M-19S	Shallow	582.5	577.5	550	<550		
M	M-1SA^	Shallow	583	578	550	<550		
M	M-20S	Shallow	585.5	580.5	550	<550		
M	M-21S	Shallow	583.9	578.9	550	<550		
IVI	M-225	Shallow	584.7	579.7	550	<000		
IVI NA	IVI-235	Sugilow	582.6	d.11C	550	<050		
IVI	UK-1				000			
Notes:	Notac:							
* Well seroon a	Notes:							
Target leachate	evaluon estimat		d 7 are the torget la	achata lavela actabila	od in the PCPA	mit		
Target leachate	alevations for	Colle F C H I	and M are based on	liner elevations plus	ne foot			
Magaura				the levels is side if				
ivieasured leach 2009. Measured leach	hate elevations		, / are the average of	or the levels inside the	ceil from January th	rough August		
compliance with	h the required le	achate levels at	these units.					
Grav shaded of	ells indicate lear	chate levels with	in or above the scre	en interval.				
			2. 22210 110 0010			1		

Pages from Permit Module K
## OHIO EPA DHWM

Envirosafe Services of Ohio, Inc. Hazardous Waste Permit – May 22, 2008 Page 137 of 165

## AUG 2 0 2008

must be considered elevated if its concentration is equal to or greater than the comparison standard in Permit Condition K.2(b)(i) or greater than a comparison standard determined in accordance with Permit Condition K.2(b)(ii) and an alternate source demonstration in accordance with Permit Condition K.6(i) has not been submitted.

Constituent	Comparison Standard for Unaffected Wells (µg/L)	
acetone	10	
Benzene	1	
chloroform	1	
1,1-dichloroethane	1	
1,2-dichloroethane	1	
1,4-dioxane	50	
ethylbenzene	1	
methylene chloride	1	
methyl ethyl ketone	10	
total phenols	5	
tetrahydrofuran	2	
toluene	<b>1</b>	
1,1,1-trichloroethane	1	
trichloroethene	1	
vinyl chloride	2	
total xylenes	1	
cadmium (dissolved)	1	
chromium (dissolved)	25	
dissolved lead	5	
cyanide	10	

(i)

Table K-1. Constituents With Specified Comparison Standards

DEC 172009

Envirosafe Services of Ohio, Inc. Hazardous Waste Permit – November 30, 2009 Page 138 of 165

(ii) Table K-2. Constituents With Comparison Standards listed in Appendix E.7 of the approved Part B permit application:

Constituent	States - Co					
Barium (dissolved)						
Cyanide at R-6						

- (iii) For constituents without comparison standards listed in Appendix E.7 of the approved Part B permit application (e.g., new or replacement wells or Appendix to OAC Rule 3745-54-98 constituents where comparison standards are required as a result of a well being identified as affected), comparison standards must be developed in accordance with the following requirements and submitted as a permit modification to Appendix E.7 of the approved Part B permit application.
  - (a) The Permittee must evaluate currently available analytical results and determine, based on historical data at the site, regional data, geologic information and other relevant information, whether the constituent concentration at each well has been affected by past or current operations at the facility per Permit Condition K.6(c). The determination and justification supporting the determination must be submitted with the first semi-annual final data.

(b) In the case that the Permittee finds, in accordance with Permit Condition K.2(b)(iii)(a), that the concentration of a constituent at a well has been affected by past or current operations at the facility or the director does not concur with the Permittee's findings that it is not elevated, then that constituent at that well will be considered elevated until demonstrated, to the director's satisfaction, that it is not elevated due to past or current operations of the facility.

MAR 0 3 2010

Envirosafe Services of Ohio, Inc. Hazardous Waste Permit – January 25, 2010 Page 141 of 165

Table K-3.Ground Water Quality Parameters



Note: The parameters in Table K-3 will be measured in the field in accordance with the Permittee's Standard Operating Procedures for the collection of ground water samples as described in Appendix E.9 of the Part B Permit Application. These parameters will be collected to demonstrate that the collected ground water samples are representative of formation water.

(c) Concentration Limits

In lieu of establishing individual concentration limits for elevated constituents determined in Permit Condition K.2(b)(i), (ii) and (iii), K.6(c), (d), (e)(iii) and (g), per OAC Rule 3745-54-94 for the affected wells and their constituents, the Permittee must apply the ACL Model in accordance with Appendix E-11 of the approved Part B permit application.

(d) Compliance Period

The Permittee must monitor for the constituents identified in Tables K-1, K-2 and K-3 in Permit Condition K.2(b) during the compliance period described in Permit Condition I.1(c).

K.3 <u>Corrective Action Program</u> OAC Rules 3745-54-98, 3745-54-99, 3745-54-100 and 3745-54-101

When target risk levels, calculated in accordance with the ACL model in Appendix E-11 of the approved Part B permit application, are exceeded in the wells listed in Permit Condition K.2(a), the Permittee must:

4/20/07 CI

Envirosafe Services of Ohio, Inc. Hazardous Waste Permit Renewal Page 156a of 165

## ATTACHMENT K-1 Monitoring Wells in the Integrated Ground Water Monitoring Program Permit Condition K.1.(a)

S.	Wells	"D" \	Nells	Bedrock Wells
F1S	M6S	<b>Ε1</b> DΔ	MAD	D 1
F2S	M10S	F2D	M5D	
F3S	M11S	F3D	M6D	R_3
G1S	M12S	G1DA	MBD	
G2S	M13S	G2DA	MOD	R-5
G3S	M14S	G3D	M10D	R-6
G4S	M15S	G6	M11D	R-7
H1S	M16S	G7	M12D	R-8
H2S	M17S	G8	M13D	R-9
H3S	M18S	G9	M14D	R-10
H4S	M19S	G10A	M15D	R-11
H5S	M20S	G11	M16D	R-12
H6S	M21S	H1D	M17D	R-13
I3SA	M22S	H2D	M18D	R-14
4S	M23S	H3D	M19D	R-15
I5SA	MR1SA	H4D	M20D	R-16
16S	MR2S	H5D	M21D	R-17
17S	MR3S	H6D	M22D	R-18
18S	MR4S	I3D	MR1DA	R-19
M1S	SW1S	14D	MR2D	R-20
M2S	SW2S	15D	MR3D	R-21
M3S	SW3S	I6D	MR4D	R-22
M5S		M1D	SW1D	R-23
		M2D	SW2D	R-24
		M3D	SW3D	CR-1*
1			:	DDG-1*
				DDG-3*
				DUG-1*
		· · · · ·		DUG-2*

*Bedrock Water Level Monitoring Wells. These wells are utilized for collecting water level measurements only.



.